Predicting Kernel Growth of Maize under Controlled Water and Nitrogen Applications

Abstract

The availability of water and nitrogen (N) to maize during its flowering stage affects the growth of individual kernels. The present study reports the variability of maize kernel dry weight under different levels of water and N applications. Two consecutive-year experiments were conducted during 2009 and during 2010 to study the interaction between three irrigation regimes and five N application rates on weekly maize kernel growth. Logistic and regression equations were fitted to kernel moisture content and kernel dry weight as a function of thermal time (TT) during critical crop stages. Kernel moisture content and growth rate increased non-linearly from 1 week after silking to physiological maturity. By applying logistic function we were able to improve simulation of kernel moisture content and daily increases in kernel dry weight. The logistic curve showed kernel moisture contents linearly correlated with kernel dry weight. Similarly, regression analyses of kernel dry weight showed a significant positive correlation with kernel moisture content for the 2009 (R2 = 0.86 NRMSE = 23%) and 2010 growing seasons (R2 = 0.92; NRMSE = 19%). Therefore, the logistics curves derived from the observed data may be helpful for predicting daily kernel growth for the semi-arid conditions. The results showed that the optimal N rate for maximum kernel dry weight was 250 kg ha−1 under 525 mm delta of water application ha−1. This rate might be considered in formulating good agricultural practices for optimum maize kernel growth in the semi-arid regions. Thus, our results contribute to better understanding of best management practices of N fertilizer and irrigation water for optimum maize productivity under semiarid region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbas, G., Fatima, Z., Hussain, M., Hussain, S., Sarwar, N., Ahmed, M., et al. (2020). Nitrogen rate and hybrid selection matters productivity of maize–maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. International Journal of Plant Production.. https://doi.org/10.1007/s42106-020-00086-5.

    Article  Google Scholar 

  2. Acreche, M. M., & Slafer, G. A. (2009). Grain weight, radiation interception and use efficiency as affected by sink-strength in Mediterranean wheat released from 1940 to 2005. Field Crops Research, 110, 98–105. https://doi.org/10.1016/j.fcr.2008.07.006.

    Article  Google Scholar 

  3. Albarenque, S. M., Basso, B., Caviglia, O. P., & Melchiori, R. J. M. (2016). Spatio-temporal nitrogen fertilizer response in maize: field study and modeling approach. Agronomy Journal, 108, 1–13. https://doi.org/10.2134/agronj2016.02.0081.

    CAS  Article  Google Scholar 

  4. Ali, R. S., Saghar, F. S., & Shahrokh, Z. P. (2011). Logistic model application for prediction of maize yield under water and nitrogen management. Agriculture Water Management, 99, 51–57. https://doi.org/10.1016/j.agwat.2011.07.019.

    Article  Google Scholar 

  5. Andrade, F. H., & Ferreiro, M. A. (1996). Reproductive growth of maize, sunflower and soybean at different source levels during grain filling. Field Crops Research, 48, 155–165. https://doi.org/10.1016/S0378-4290(96)01017-9.

    Article  Google Scholar 

  6. Andrade, F. H., Echarte, L., Rizzalli, R., Della Maggiora, A., & Casanovas, M. (2002). Kernel number prediction in maize under nitrogen or water stress. Crop Science, 42(4), 1173–1179.

    Article  Google Scholar 

  7. Basso, B., Cammarano, D., Troccoli, A., Chen, D., & Ritchie, J. T. (2010). Long-term wheat response to nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. European Journal of Agronomy, 33, 132–138. https://doi.org/10.1016/j.eja.2010.04.004.

    Article  Google Scholar 

  8. Basso, B., Ritchie, J. T., Cammarano, D., & Sartori, L. (2011). A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. European Journal of Agronomy, 35, 215–222. https://doi.org/10.1016/j.eja.2011.06.004.

    Article  Google Scholar 

  9. Bertheloot, J., Pierre, M., & Bruno, A. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148, 1707–1720. https://doi.org/10.1104/pp.108.124156.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Boomsma, C. R., Santini, J. B., Tollenaar, M., & Vyn, T. J. (2009). Maize morpho-physiological responses to intense crowding and low nitrogen availability: an analysis and review. Agronomy Journal, 101, 1426. https://doi.org/10.2134/agronj2009.0082.

    CAS  Article  Google Scholar 

  11. Borrás, L., & Gambín, B. L. (2010). Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Research, 118, 1–12. https://doi.org/10.1016/j.fcr.2010.04.010.

    Article  Google Scholar 

  12. Borrás, L., & Otegui, M. E. (2001). Maize kernel weight response to post flowering source–sink ratio. Crop Science, 49, 1816–1822. https://doi.org/10.2135/cropsci2001.1816.

    Article  Google Scholar 

  13. Borrás, L., & Westgate, M. E. (2006). Predicting maize kernel sink capacity early in development. Field Crops Research, 95, 223–233. https://doi.org/10.1016/j.fcr.2005.03.001.

    Article  Google Scholar 

  14. Borrás, L., Westgate, M. E., & Otegui, M. E. (2003). Control of kernel weight and kernel water relations by post-flowering source–sink ratio in maize. Annals of Botany, 91, 857–867. https://doi.org/10.1093/aob/mcg090.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Borrás, L., Slafer, G. A., & Otegui, M. E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86, 131–146. https://doi.org/10.1016/j.fcr.2003.08.002.

    Article  Google Scholar 

  16. Borrás, L., Zinselmeier, C., Senior, M. L., Westgate, M. E., & Muszynski, M. G. (2009). Characterization of grain-filling patterns in diverse maize germplasm. Crop Science, 49, 999–1009. https://doi.org/10.2135/cropsci2008.08.0475.

    Article  Google Scholar 

  17. Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89, 1–16. https://doi.org/10.1016/j.fcr.2004.01.005.

    Article  Google Scholar 

  18. Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO Journal of the Human Environment, 31(2), 132–140.

    Article  Google Scholar 

  19. Chen, Y., Hoogenboom, G., Ma, Y., Li, B., & Guo, Y. (2013). Maize kernel growth at different floret positions of the ear. Field Crops Research, 149, 177–186. https://doi.org/10.1016/j.fcr.2013.04.028.

    Article  Google Scholar 

  20. D’Andrea, K. E., Otegui, M. E., & Cirilo, A. G. (2008). Kernel number determination differs among maize hybrids in response to nitrogen. Field Crops Research, 105(3), 228–239.

    Article  Google Scholar 

  21. Durand, J.-L., Delusca, K., Boote, K., et al. (2017). How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy. https://doi.org/10.1016/j.eja.2017.01.002.

    Article  Google Scholar 

  22. Echarte, L., Andrade, F. H., Sadras, V. O., & Abbate, P. (2006). Kernel weight and its response to source manipulations during grain filling in Argentinean maize hybrids released in different decades. Field Crops Research, 96, 307–312. https://doi.org/10.1016/j.fcr.2005.07.013.

    Article  Google Scholar 

  23. Evans, J. R. (1989). Partitioning of nitrogen between and within leaves grown under different irradiances. Australian Journal of Plant Physiology, 16, 533–548. https://doi.org/10.1071/PP9890533.

    Article  Google Scholar 

  24. FAO. (1978). Agro-ecological zones. Report on the project, Vol. 1. Methodology and results for Africa. Rome: FAO.

    Google Scholar 

  25. Frey, N. M. (1981). Dry matter accumulation in kernels of maize. Crop Science, 21, 118–122. https://doi.org/10.2135/cropsci1981.0011183X002100010032x.

    Article  Google Scholar 

  26. Gambín, B. L., & Borrás, L. (2005). Sorghum kernel weight. Crop Science, 45, 553–561.

    Article  Google Scholar 

  27. Gambín, B. L., Borrás, L., & Otegui, M. E. (2006). Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 95, 316–326. https://doi.org/10.1016/j.fcr.2005.04.002.

    Article  Google Scholar 

  28. Gambín, B. L., Borrás, L., & Otegui, M. E. (2007). Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research, 101, 1–9. https://doi.org/10.1016/j.fcr.2006.09.001.

    Article  Google Scholar 

  29. Gehl, R. J., Schmidt, J. P., Maddux, L. D., & Gordon, W. B. (2005). Corn yield response to nitrogen rate and timing in sandy irrigated soils. Agronomy Journal, 97(4), 1230–1238.

    Article  Google Scholar 

  30. Gotosa, J., Kodzwa, J., Nyamangara, J., et al. (2019). Effect of nitrogen fertilizer application on maize yield across agro-ecological regions and soil types in Zimbabwe: A meta-analysis approach. International Journal of plant Production, 13, 251–266. https://doi.org/10.1007/s42106-019-00045-9.

    Article  Google Scholar 

  31. Halvorson, A. D., Schweissing, F. C., Bartolo, M. E., & Reule, C. A. (2005). Corn response to nitrogen fertilization in a soil with high residual nitrogen. Agronomy Journal, 97, 1222–1229. https://doi.org/10.2134/agronj2004.0279.

    Article  Google Scholar 

  32. Hammad, H. M., Ahmad, A., Abbas, F., & Farhad, W. (2012). Optimizing water and nitrogen use for maize production under semi-arid conditions. Turkish Journal of Agriculture and Forestry, 36, 519–532. https://doi.org/10.3906/tar-1111-24.

    Article  Google Scholar 

  33. Hammad, H. M., Ahmad, A., Farhad, W., Abbas, F., Qasim, K., & Saeed, S. (2013). Nitrogen stimulates phenological traits, growth and growing degree days of maize. Pakistan Journal of Agricultural Science, 50, 337–344.

    Google Scholar 

  34. Hammad, H. M., Ahmad, A., Abbas, F., Farhad, W., Cordoba, B. C., & Hoogenboom, G. (2015). Water and nitrogen productivity of maize under semi-arid environments. Crop Science, 55, 877–888. https://doi.org/10.2135/cropsci2013.05.0291.

    CAS  Article  Google Scholar 

  35. Hammad, H. M., Abbas, F., Ahmad, A., Farhad, W., Anothai, J., & Hoogenboom, G. (2018a). Predicting water and nitrogen requirements for maize under semi-arid conditions using the CSM-CERES-Maize model. European Journal of Agronomy, 100, 56–66. https://doi.org/10.1016/j.eja.2017.10.008.

    CAS  Article  Google Scholar 

  36. Hammad, H. M., Abbas, F., Ahmad, A., Farhad, W., Wilkerson, C. J., & Hoogenboom, G. (2018b). Evaluation of timing and rates for nitrogen application for optimizing maize growth and development and maximizing yield. Agronomy Journal, 110, 565–571. https://doi.org/10.2134/agronj2017.08.0466.

    CAS  Article  Google Scholar 

  37. Hisse, I. R., D’Andrea, K. E., & Otegui, M. E. (2019). Source-sink relations and kernel weight in maize inbred lines and hybrids: Responses to contrasting nitrogen supply levels. Field Crops Research, 230, 151–159.

    Article  Google Scholar 

  38. Hussain, M., Latif, A., Hassan, W., Farooq, S., Hussain, S., Ahmad, S., et al. (2019a). Maize hybrids with well-developed root system perform better under deficit supplemental irrigation. Soil and Environment, 38(2), 203–213.

    CAS  Article  Google Scholar 

  39. Hussain, S., Ijaz, M., Hussain, M., Ul-Allah, S., Abbas, T., Nawaz, A., et al. (2019b). Advanced production technologies of maize. In M. Hasanuzzaman (Ed.), Agronomic crops. Singapore: Springer. https://doi.org/10.1007/978-981-32-9151-5_13.

    Google Scholar 

  40. Ibragimov, N., Djumaniyazova, Y., Khaitbaeva, J., et al. (2019). Simulating crop productivity in a triple rotation in the semi-arid area of the Aral Sea Basin. International Journal of plant Production. https://doi.org/10.1007/s42106-019-00083-3.

    Article  Google Scholar 

  41. Khan, A., Fahad, S., Khan, A., Saud, S., Adnan, M., Wahid, F., et al. (2019). Managing tillage operations and manure to restore soil carbon stocks in wheat-maize cropping system. Agronomy Journal, 111, 1–10.

    Article  Google Scholar 

  42. Krishnan, P., Chopra, U. K., Verma, A. P. S., Joshi, D. K., & Chand, I. (2014). Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels. Journal of Bioscience Bioengineering, 117, 512–518. https://doi.org/10.1016/j.jbiosc.2013.09.010.

    CAS  Article  PubMed  Google Scholar 

  43. Liu, K., Ma, B. L., Luan, L., & Li, C. (2011). Nitrogen, phosphorus, and potassium nutrient effects on grain filling and yield of high-yielding summer corn. Journal of Plant Nutrion, 34, 2011. https://doi.org/10.1080/01904167.2011.585208.

    CAS  Article  Google Scholar 

  44. Mayer, L. I., Rossini, M. A., & Maddonni, G. A. (2012). Inter-plant variation of grain yield components and grain composition of maize crops grown under contrasting nitrogen supply. Field Crops Research, 125, 98–108. https://doi.org/10.1016/j.fcr.2011.09.004.

    Article  Google Scholar 

  45. Mayer, L. I., Savin, R., & Maddonni, G. A. (2016). Heat stress during grain filling modifies kernel protein composition in field-grown maize. Crop Science, 56, 1890–1903. https://doi.org/10.2135/cropsci2015.09.0537.

    CAS  Article  Google Scholar 

  46. Mehrabi, F., & Sepaskhah, A. R. (2019). Winter wheat yield and DSSAT Model evaluation in a diverse semi-arid climate and agronomic practices. International Journal of plant Production. https://doi.org/10.1007/s42106-019-00080-6.

    Article  Google Scholar 

  47. Mumo, L., Yu, J., & Fang, K. (2018). Assessing impacts of seasonal climate variability on maize yield in Kenya. International Journal of plant Production, 12, 297–307. https://doi.org/10.1007/s42106-018-0027-x.

    Article  Google Scholar 

  48. Peltonen-Sainio, P., Jauhiainen, L., & Hakala, K. (2011). Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. Jourcal Agricultural Science, 149, 49–62. https://doi.org/10.1017/S0021859610000791.

    Article  Google Scholar 

  49. Raziel, A. O., Savin, R., Cossani, C. M., & Slafer, G. A. (2015). Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research, 183, 184–203.

    Article  Google Scholar 

  50. Ritchie, S. W., & Hanway, J. J. (1993). How a corn plant develops. Spec. Rep. 48. Coop. Ext. Ser. Ames: Iowa State University.

    Google Scholar 

  51. Saini, H. S., & Westgate, M. E. (2000). Reproductive development in grain crops during drought. Advance in Agronomy, 68, 59–96. https://doi.org/10.1016/S0065-2113(08)60843-3.

    Article  Google Scholar 

  52. Sala, R. G., Westgate, M. E., & Andrade, F. H. (2007). Source/sink ratio and the relationship between maximum water content, maximum volume, and final dry weight of maize between maximum water content, maximum volume, and final dry weight of maize kernels. Field Crops Research, 101, 19–25. https://doi.org/10.1016/j.fcr.2006.09.004.

    Article  Google Scholar 

  53. SAS. (2004). Institute SAS/STAT 9.1 User’s guide. Cary: SAS Inst.

    Google Scholar 

  54. Savin, R., Prystupa, P., & Araus, J. L. (2006). Hordein composition as affected by post-anthesis source–sink ratio under different nitrogen availabilities. Journal of Cereal Science, 44(1), 113–116. https://doi.org/10.1016/j.jcs.2006.01.003.

    CAS  Article  Google Scholar 

  55. Sepaskhah, A. R., Saghar, F. S., & Shahrokh, Z. P. (2011). Logistic model application for prediction of maize yield under water and nitrogen management. Agriculture Water Management, 99, 51–57. https://doi.org/10.1016/j.agwat.2011.07.019.

    Article  Google Scholar 

  56. Shanahan, J. F., Kitchen, N. R., Raun, W. R., & Schepers, J. S. (2008). Responsive in-season nitrogen management for cereals. Computers and Electronic in Agriculture, 61(1), 51–62.

    Article  Google Scholar 

  57. Sharifi, R. S., & Namvar, A. (2016). Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.). Biologija, 62, 35–45. https://doi.org/10.6001/biologija.v62i1.3288.

    CAS  Article  Google Scholar 

  58. Soltani, A., & Hoogenboom, G. (2007). Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research, 103, 198–207.

    Article  Google Scholar 

  59. Soltani, A., & Sinclair, T. R. (2015). A comparison of four wheat models with respect to robustness and transparency simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37–46.

    Article  Google Scholar 

  60. Stutts, L., Wang, Y., & Stapleton, A. E. (2018). Plant growth regulators ameliorate or exacerbate abiotic, biotic and combined stress interaction effects on Zea mays kernel weight with inbred specific patterns. Environmental and Experimental Botany, 147, 179–188. https://doi.org/10.1016/j.envexpbot.2017.12.012.

    CAS  Article  Google Scholar 

  61. Tafteh, A., & Sepaskhah, A. R. (2012). Yield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation. International Journal of Plant Production, 6(1), 93–114.

    CAS  Google Scholar 

  62. Tollenaar, M., & Daynard, T. B. (1978). Kernel growth and development at two positions on the ear of maize (Zea mays L.). Canadian Journal Plant Science, 58, 189–197. https://doi.org/10.4141/cjps78-028.

    Article  Google Scholar 

  63. Uhart, S. A., & Andrade, F. H. (1995). Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Science, 35, 183–190. https://doi.org/10.2135/cropsci1995.0011183X003500010034x.

    Article  Google Scholar 

  64. Worku, M., Bänziger, M., Erley, G. S., Friesen, D., Diallo, A. O., & Horst, W. J. (2012). Nitrogen efficiency as related to dry matter partitioning and root system size in tropical mid-altitude maize hybrids under different levels of nitrogen stress. Field Crops Research, 130, 57–67. https://doi.org/10.1016/j.fcr.2012.02.015.

    Article  Google Scholar 

  65. Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agriculture System, 127, 81–89. https://doi.org/10.1016/j.agsy.2014.01.008.

    Article  Google Scholar 

  66. Zhou, B., Yue, Y. X., Sun, Z. D., Ma, W., & Zhao, M. (2017). Maize kernel weight responses to sowing date-associated variation in weather conditions. The Crop Journal, 5, 43–51. https://doi.org/10.1016/j.cj.2016.07.002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hafiz Mohkum Hammad.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammad, H.M., Abbas, F., Ahmad, A. et al. Predicting Kernel Growth of Maize under Controlled Water and Nitrogen Applications. Int. J. Plant Prod. (2020). https://doi.org/10.1007/s42106-020-00110-8

Download citation

Keywords

  • Grain filling
  • Grain yield
  • Kernel growth rate
  • Kernel moisture content
  • Semi-arid region