Anderson, T. H. (2003). Microbial eco-physiological indicators to assess soil quality. Agriculture, Ecosystems & Environment,
98, 285–293.
Article
Google Scholar
Anderson, R. (2005). A multi-tactic approach to manage weed population dynamics in crop rotations. Agronomy Journal,
97(6), 1579–1583.
Article
Google Scholar
Banik, P., Midya, A., Sarkar, B. K., & Ghose, S. S. (2006). Wheat and chickpea intercropping systems in the additive series experiment: Advantages and smothering. European Journal of Agronomy,
24, 324–332.
Article
Google Scholar
Bertramson, B. R. (1942). phosphorous analysis of plant material. Plant Physiology,
17(3), 447–454.
CAS
Article
Google Scholar
Chen, C., Westcot, M., Neill, K., Wichaman, D., & Knox, M. (2004). Row configuration and nitrogen application for barley-pea intercropping in Montana. Agronomy Journal,
96, 1730–1738.
Article
Google Scholar
Eskandari, H., & Ghanbari, A. (2010). Environmental resource consumption in wheat (Triticum aestivum) and bean (Vicia faba) intercropping: Comparison of nutrient uptake and light interception. Notulae Scientia Biologicae.,
2(3), 100–103.
CAS
Article
Google Scholar
Gao, Y., Duan, A., Sun, J., Li, F., Liu, Z., Liu, H., et al. (2009). Crop coefficient and water-use efficiency of winter wheat and spring corn strip intercropping. Field Crops Research.,
111(1), 65–73.
Article
Google Scholar
Gardner, J. B., & Drinkwater, L. E. (2009). The fate of nitrogen in grain cropping systems: A meta-analysis of N-15 field experiments. Ecological Applications,
19(8), 2167–2184.
Article
Google Scholar
Jenkinson, D. S., & Powelson, D. S. (1976). The effect of biocidal treatments of metabolism in soil-V: A method for measuring soil biomass. Soil Biology & Biochemistry,
8, 209–213.
CAS
Article
Google Scholar
Jeyabal, A., & Kuppuswamy, G. (2001). Recycling of organic wastes to produce vermicompost and its response in rice–legume cropping system and soil fertility. Europian Journal of Agronomy,
15, 153–170.
CAS
Article
Google Scholar
Kaori, K. (2012). Biodiversity of intercropped fields in central African rainforests. African study monographs. The supplementary issue.,
43, 61–84.
Google Scholar
Kremen, C., & Miles, A. (2012). Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecology and Society.,
17(4), 40–47.
Google Scholar
Li, W., Li, L., Sun, J., Guo, T., Zhang, F., Bao, X., et al. (2005). Effects of intercropping and nitrogen application on nitrate present in the profile of an OrthicAnthrosol in Northwest China. Agriculture Ecosystem and Environment.,
105, 483–491.
CAS
Article
Google Scholar
Li, L., Li, S., Sun, J., Zhou, L., Bao, X., Zhang, H., et al. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National academy of Sciences of the United States of America,
104(27), 11192–11196.
CAS
Article
Google Scholar
Li, S. M., Li, L., Zhang, F. S., & Tang, C. (2004). Acid phosphatase role in chickpea. Corn intercropping. Annals of Botany,
94, 297–303.
CAS
Article
Google Scholar
Li, X., Mu, Y., Cheng, Y., Liu, X., & Nian, H. (2013). Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta physiological Plantarum,
35(4), 1113–1119.
CAS
Article
Google Scholar
Liebman, M., & Davis, A. S. (2000). Integration of soil, crop and weed management in Low input farming systems. Weed Research,
40, 27–47.
Article
Google Scholar
Liebman, M., & Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological Applications Journal.,
3, 92–122.
Article
Google Scholar
Mada, D., Duniya, N., & Adams, I. G. (2013). Effect of continuous application of herbicide on soil and environment with crop protection machinery in Southern Adamawa state. International Refereed Journal of Engineering and Science.,
2(6), 4–9.
Google Scholar
Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science,
296, 1694–1697.
CAS
Article
Google Scholar
Nelson, D. W., & Somers, L. E. (1973). Determination of total nitrogen in plant material. Agronomy.,
65, 109–112.
CAS
Article
Google Scholar
O’Riordan, T., & Stoll-Kleemann, S. (2002). Biodiversity, sustainability and human communities: Protecting beyond the protected. Cambridge: Cambridge University Press.
Book
Google Scholar
Ramirez-Garcia, J., Martens, H. J., Quemada, M., & Thorup-Kristensen, K. (2014). Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. Journal of Plant Ecology.,
8(4), 380–389.
Google Scholar
Rivest, D., Cogliastro, A., Bradley, R. L., & Olivier, A. (2010). Intercropping hybrid poplar with soybean increases soil microbial biomass, mineral N supply and tree growth. Agroforest Systems.,
80, 33–40.
Article
Google Scholar
Scherr, S. J., & McNeely, J. A. (2008). Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘eco agriculture’landscapes. Philosophical Transactions of the Royal Society. Biological Sciences.,
363(1491), 477–494.
Article
Google Scholar
Schowalter, T. D. (2013). Insects and sustainability of ecosystem services. Boca Raton: CRC Press.
Book
Google Scholar
Schroder, S., Begemann, F., & Harrer, S. (2007). Agrobiodiversity monitoring documentation at European level. Journal of Consumer Protection and Food Safety.,
1, 29–32.
Article
Google Scholar
Scott, J. T., Cotner, J. B., & LaPara, T. M. (2012). Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition. Frontiers in Microbiology.,
3, 1–8.
Google Scholar
Sosnoskie, L. M., Herms, C. P., & Cardina, J. (2006). Weed seed bank community composition in a 35-yr-old tillage and rotation experiment. Weed Science,
54(2), 263–273.
CAS
Article
Google Scholar
Tang, X., Bernard, L., Brauman, A., Daufresne, T., Deleporte, P., Desclaux, D., et al. (2014). Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biology & Biochemistry,
75, 86–93.
CAS
Article
Google Scholar
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters,
8(8), 857–874.
Article
Google Scholar
Vandermeer, J. (1992). The ecology of inter-cropping. Cambridge: Cambridge University Press.
Google Scholar
Waite, S. (2000). Statistical ecology in practice. Upper Saddle River: Prentice Hall Publishing.
Google Scholar
Wall, D. H., Bardgett, R. D., Covich, A. P., & Snelgrove, V. R. (2004). The need for understanding how biodiversity and ecosystem functioning affect ecosystem services in soils and sediments. In D. H. Wall (Ed.), Sustaining bio diversity and ecosystem services in soils and sediments. Washington DC: Island Press.
Google Scholar
Watanabe, M., Ortega, E., Bergier, I., & Silva, J. S. V. (2012). Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: Anthropogenic influence and climate change. Brazilian Journal of Biology.,
72(3), 691–708.
CAS
Article
Google Scholar
Zhang, F., & Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhance crop productivity and nutrient-use efficiency. Plant and Soil,
248(1–2), 305–312.
CAS
Article
Google Scholar
Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A., & Eitzel, M. (2010). A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. Journal of Environmental Quality,
39(1), 76–84.
CAS
Article
Google Scholar
Zimdahl, R. L. (1993). Fundamentals of weed science. New York: Academic Press.
Google Scholar