International Journal of Plant Production

, Volume 12, Issue 1, pp 25–32 | Cite as

Integrated Phosphorus Management Improves Production of Rice–Wheat Cropping-System Under Salt Affected Conditions

  • Khalil Ahmed
  • Ghulam Qadir
  • Muhammad Qaisar Nawaz
  • Amar Iqbal Saqib
  • Muhammad Rizwan
  • Muhammad Anwar Zaka
  • Abdur Rehim
  • Muhammad Imran
  • Muhammad Amjad Bashir
Original Paper


Phosphorus (P) is the second most important macronutrient and is deficient in most of the agricultural soils based on higher retention with soil and poor recovery from the applied fertilizers. A field experiment was conducted in 2009–2012 in which different organic wastes of agricultural and industrial origin with inorganic P fertilizer to improve crop yield, P use efficiency and physic-chemical properties of soils in salt affected soils under rice–wheat cropping system. The treatments included; P at farmer practice, P on soil need basis, PoM + chemical fertilizer (1:1), MSWC + chemical fertilizer (1:1), PrM + chemical fertilizer (1:1) and FM + chemical fertilizer (1:1). Analysis showed that nutrients source significantly improved vegetative and yield attributes of rice and wheat crops. However, application of PoM + chemical fertilizer on soil need basis significantly improved the growth and yield attributes of both crops and soil physic-chemical properties than all the other treatments. The effectiveness of treatments could be arrange as PoM + chemical fertilizer on soil need basis > FM + chemical fertilizer on soil need basis > MSWC + chemical fertilizer on soil need basis > PrM + chemical fertilizer on soil need basis > P on soil need basis > P at farmer practice, respectively. In conclusion, integration of organic and chemical P fertilizer resulted in well-balanced nutrient management plan. Application of PoM + chemical fertilizer on soil need basis is recommended as an effective and economical integrated nutrient management practice enhancing productivity of rice–wheat crop and improving physical and chemical properties of salt affected soils.


Chemical fertilizers Manures Rice–wheat Phosphorus 


  1. Ahmad, A., Fares, A., Hue, N. V., Safeeq, M., Radovich, T., Abbas, F., et al. (2014). Root distribution of sweet corn (Zea mays) as affected by manure types, rates and frequency of applications. APS, Journal of Animal and Plant Sciences, 24(2), 592–599.Google Scholar
  2. Ahmed, B. O., Inoue, M., & Moritani, S. (2010). Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat. Agricultural Water Management, 97(1), 165–170.CrossRefGoogle Scholar
  3. Ahn, B. K., Lee, Y. H., & Lee, J. H. (2010). Fertilizer management practices with rice straw application for improving soil quality in watermelon monoculture greenhouse plots. Korean Journal of Soil Science and Fertilizer, 43(1), 75–82.Google Scholar
  4. Ali Mahmood, I., Ali, A., Aslam, M., Shahzad, A., Sultan, T., & Hussain, F. (2013). Phosphorus availability in different salt-affected soils as influenced by crop residue incorporation. International Journal of Agriculture & Biology, 15(3), 472–478.Google Scholar
  5. Athar, H., & Tahir, A. (2014). Ability of Puccinellia ciliata to grow in a waterlogged saline environment. Agrochimica, 57, 279–288.Google Scholar
  6. Boateng, S. A., Zickermann, J., & Kornahrens, M. (2006). Poultry manure effect on growth and yield of maize. West African Journal of Applied Ecology, 9(1), 12–18.Google Scholar
  7. Boschetti, A. N. G., Quintero, G. C. E., & Benavidez, Q. R. A. (1998). Characterization of the capacity factor of phosphorus in soils of Entre Rios, Argentina. Revista Brasileira de Ciencia do Solo, 22(1), 95–99.CrossRefGoogle Scholar
  8. Cho-Ruk, K., & Morrison, R. J. (2004). Soil phosphorus adsorption and salinity influence. Malaysian Journal of Soil Science, 8, 1–11.Google Scholar
  9. Choudhary, O. P., Ghuman, B. S., Thuy, N., & Buresh, R. J. (2011). Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice–wheat cropping system in a calcareous soil. Field Crops Research, 121(3), 363–372.CrossRefGoogle Scholar
  10. Cong, P. T., & Merckx, R. (2005). Improving phosphorus availability in two upland soils of Vietnam using Tithonia diversifolia H. Plant and Soil, 269(1), 11–23.CrossRefGoogle Scholar
  11. Dorado, J., Zancada, M. C., Almendros, G., & López-Fando, C. (2003). Changes in soil properties and humic substances after long-term amendments with manure and crop residues in dryland farming systems. Journal of Plant Nutrition and Soil Science, 166(1), 31–38.CrossRefGoogle Scholar
  12. Dusberg, J. M., Smith, M. S., & Doran, J. W. (1989). In dynamics of SOM in tropical ecosystems. Honolulu: University of Hawaii.Google Scholar
  13. Eichler-Löbermann, B., Köhne, S., Kowalski, B., & Schnug, E. (2008). Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. Journal of Plant Nutrition, 31(4), 659–676.CrossRefGoogle Scholar
  14. Frossard, E., Skrabal, P., Sinaj, S., Bangerter, F., & Traore, O. (2002). Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutrient Cycling in Agroecosystems, 62(2), 103–113.CrossRefGoogle Scholar
  15. Grant, C., Bittman, S., Montreal, M., Plenchette, C., & Morel, C. (2005). Soil and fertilizer phosphoru s: effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85(1), 3–14.CrossRefGoogle Scholar
  16. Hoppmann, J., Volland, J., Schmidt, T. S., & Hoffmann, V. H. (2014). The economic viability of battery storage for residential solar photovoltaic systems–a review and a simulation model. Renewable and Sustainable Energy Reviews, 39, 1101–1118.CrossRefGoogle Scholar
  17. Hussain, A., Ghafoor, A., Anwar-Ul-Haq, M., & Nawaz, M. (2003). Application of the Langmuir and Freundlich equations for P adsorption phenomenon in saline-sodic soils. International Journal of Agriculture and Biology, 5(3), 1560–8530.Google Scholar
  18. Khalil, S., Hussain, Z., Tariq, M., & Rahman, H. (2010). Impact of planting density and P-fertilizer source on the growth analysis of maize. Pakistan Journal of Botany, 42(4), 2349–2357.Google Scholar
  19. Khan, A. H., Singh, A. K., Singh, S., Zaidi, N. W., Singh, U. S., & Haefele, S. M. (2014). Response of salt-tolerant rice varieties to biocompost application in sodic soil of Eastern Uttar Pradesh. American Journal of Plant Sciences, 5(1), 7–13.CrossRefGoogle Scholar
  20. Kumar, P., Halepyati, A. S., Desai, B. K., & Pujari, B. T. (2010). Effect of integrated nutrient management on economics of maize cultivation. Karnataka Journal of Agricultural Sciences, 4, 1–20.CrossRefGoogle Scholar
  21. Lakhdar, A., Hafsi, C., Rabhi, M., Debez, A., Montemurro, F., Abdelly, C., et al. (2008). Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L. Bioresource Technology, 99(15), 7160–7167.CrossRefPubMedGoogle Scholar
  22. Leytem, A. B., & Mikkelsen, R. L. (2005). The nature of phosphorus in calcareous soils. Better Crops, 89(2), 11–13.Google Scholar
  23. Madrid, F., Lopez, R., & Cabrera, F. (2007). Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agriculture, Ecosystems & Environment, 119(3), 249–256.CrossRefGoogle Scholar
  24. Manzar-ul-Alam, S., Shah, S. A., Ali, S., & Iqbal, M. M. (2005). Yield and phosphorus-uptake by crops as influenced by chemical fertilizer and integrated use of industrial by-products. Songklanakarin Journal of Science and Technology, 27(1), 9–16.Google Scholar
  25. McLean, E. O., Oloya, T. O., & Mostaghimi, S. (1982). Improved corrective fertilizer recommendations based on a two-step alternative usage of soil tests: i. Recovery of soil-equilibrated phosphorus. Soil Science Society of America Journal, 46(6), 1193–1197.CrossRefGoogle Scholar
  26. Mehdi, S. M., Sarfraz, M., Ilyas, M., Amjad Qureshi, M., & Zaka, M. A. (2015). Integrated nutrient management using p-fixation factor in rice-wheat cropping system under salt affected conditions. International Journal of Agriculture & Biology, 17(3), 643–647.CrossRefGoogle Scholar
  27. Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition (5th ed.). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  28. Mkhabela, M. S., & Warman, P. R. (2005). The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agriculture, Ecosystems & Environment, 106(1), 57–67.CrossRefGoogle Scholar
  29. Muhammad, S., Müller, T., & Joergensen, R. G. (2007). Compost and P amendments for stimulating microorganisms and maize growth in a saline soil from Pakistan in comparison with a nonsaline soil from Germany. Journal of Plant Nutrition and Soil Science, 170(6), 745–752.CrossRefGoogle Scholar
  30. Munir, A., Nawaz, S., & Bajwa, M. A. (2012). Farm manure improved soil fertility in mungbean-wheat cropping system and rectified the deleterious effects of brackish water. Pakistan Journal of Agriculture Sciences, 49(4), 511–519.Google Scholar
  31. NFDC. (2010). Fertilizer use Related Statistics. Islamabad: National Fertilizer Development Centre.Google Scholar
  32. Opala, P. A., Othieno, C. O., Okalebo, J. R., & Kisinyo, P. O. (2010). Effects of combining organic materials with inorganic phosphorus sources on maize yield and financial benefits in western Kenya. Experimental Agriculture, 46(01), 23–34.CrossRefGoogle Scholar
  33. Roy, R. N., Finck, A., Blair, G. J., & Tandon, H. L. S. (2006). Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertilizer and Plant. Nutrition Bulletin, 16, 368.Google Scholar
  34. Sarwar, G., Schmeisky, H., Hussain, N., Muhammad, S., Tahir, M. A., & Saleem, U. (2009). Variations in nutrient concentrations of wheat and paddy as affected by different levels of compost and chemical fertilizer in normal soil. Pakistan Journal of Botany, 41(5), 2403–2410.Google Scholar
  35. Shah, M. A., Manaf, A., Hussain, M., Farooq, S., & Zafar-ul-Hye, M. (2013). Sulphur fertilization improves the sesame productivity and economic returns under rainfed conditions. International Journal of Agriculture & Biology, 15, 1301–1306.Google Scholar
  36. Sharpley, A., & Moyer, B. (2000). Phosphorus forms in manure and compost and their release during simulated rainfall. Journal of Environmental Quality, 29(5), 1462–1469.CrossRefGoogle Scholar
  37. Singh, V., Dhillon, N. S., & Brar, B. S. (2006). Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils. Nutrient Cycling in Agroecosystems, 75(1), 67–78.CrossRefGoogle Scholar
  38. Singh, M., Reddy, K. S., Singh, V. P., & Rupa, T. R. (2007). Phosphorus availability to rice (Oriza sativa L.)–wheat (Triticum estivum L.) in a Vertisol after 8 years of inorganic and organic fertilizer additions. Bioresource Technology, 98(7), 1474–1481.CrossRefPubMedGoogle Scholar
  39. Slaton, N. A., Wilson, C. E., Norman, R. J., Ntamatungiro, S., & Frizzell, D. L. (2002). Rice response to phosphorus fertilizer application rate and timing on alkaline soils in Arkansas. Agronomy Journal, 94(6), 1393–1399.CrossRefGoogle Scholar
  40. Spargo, J. T., Evanylo, G. K., & Alley, M. M. (2006). Repeated compost application effects on phosphorus runoff in the Virginia Piedmont. Journal of Environmental Quality, 35(6), 2342–2351.CrossRefPubMedGoogle Scholar
  41. Steel, R. D., Torrie, J. H., & Dickey, D. (1997). Principle and procedure of statistics: a biometrical approach. New York: McGraw-Hills Book Co., Inc.Google Scholar
  42. Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilisers and organic manures. New Delhi: Fertiliser Development and Consultation Organization.Google Scholar
  43. Tarafdar, J. C., & Claassen, N. (2003). Organic phosphorus utilization by wheat plants under sterile conditions. Biology and Fertility of Soils, 39(1), 25–29.CrossRefGoogle Scholar
  44. Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (1993). Soil fertility and fertilizers. New York: Collier Macmillan Publishers.Google Scholar
  45. Toor, G. S., & Bahl, G. S. (1997). Effect of solitary and integrated use of poultry manure and fertilizer phosphorus on the dynamics of P availability in different soils. Bioresource Technology, 62(1–2), 25–28.CrossRefGoogle Scholar
  46. US Salinity Lab Staff. (1954). Diagnosis and improvement of saline and alkali soils. Washington DC: USDA Handbook 60.Google Scholar
  47. Van Asten, P. J. A., Van’t Zelfde, J. A., Van der Zee, S. E. A. T. M., & Hammecker, C. (2004). The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel. Geoderma, 119(3), 233–247.CrossRefGoogle Scholar
  48. Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423–447.CrossRefGoogle Scholar
  49. Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., et al. (2014). Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 57(1), 14–25.CrossRefGoogle Scholar
  50. Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677–678.CrossRefGoogle Scholar
  51. Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S., Jamroz, E., et al. (2007). Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology & Biochemistry, 39(6), 1294–1302.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Khalil Ahmed
    • 1
  • Ghulam Qadir
    • 1
  • Muhammad Qaisar Nawaz
    • 1
  • Amar Iqbal Saqib
    • 1
  • Muhammad Rizwan
    • 1
  • Muhammad Anwar Zaka
    • 1
  • Abdur Rehim
    • 2
  • Muhammad Imran
    • 2
  • Muhammad Amjad Bashir
    • 3
  1. 1.Soil Salinity Research InstitutePindi BhattianPakistan
  2. 2.Department of Soil ScienceBahauddin Zakariya UniversityMultanPakistan
  3. 3.Institute of Agricultural Resources and Regional PlanningCAASBeijingChina

Personalised recommendations