Skip to main content
Log in

PeriFast/Dynamics: A MATLAB Code for Explicit Fast Convolution-based Peridynamic Analysis of Deformation and Fracture

  • Research
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

We present PeriFast/Dynamics, a compact and user-friendly MATLAB code for fast peridynamic (PD) simulations for deformation and fracture. PeriFast/Dynamics uses the fast convolution-based method (FCBM) for spatial discretization and an explicit time marching scheme to solve large-scale dynamic fracture problems. Different from existing PD solvers, PeriFast/Dynamics does not require neighbor search and storage, due to the use of the Fast-Fourier transform and its inverse to compute the integral operator. Run-times and memory allocation are independent of the number of neighbors inside the PD horizon, leading to faster computations and lower storage requirements. The governing equations and discretization method are briefly reviewed, the code structure explained, and individual modules described in detail. A demonstrative example on dynamic brittle fracture in 3D, with multiple crack branching events, is solved using three different constitutive models: a bond-based, an ordinary state-based, and a correspondence model. The small differences between results with the three different constitutive models are explained. Users are provided with a step-by-step description of the problem setup and execution of the code. PeriFast/Dynamics is a branch of the PeriFast suite of codes, and is available for download at the GitHub link provided in reference [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The source code and input data used in the examples shown in the manuscript are available for free download at https://github.com/PeriFast/Code/tree/main/PeriFast_Dynamics

References

  1. PeriFast/Dynamics. https://github.com/PeriFast/Code. Accessed Dec 2022

  2. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  Google Scholar 

  3. Hu W, Wang Y, Yu J, Yen C-F, Bobaru F (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165. https://doi.org/10.1016/j.ijimpeng.2013.07.001

    Article  Google Scholar 

  4. Zhang G, Gazonas GA, Bobaru F (2018) Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis. Int J Impact Eng 113:73–87. https://doi.org/10.1016/j.ijimpeng.2017.11.010

    Article  Google Scholar 

  5. Chen Z, Jafarzadeh S, Zhao J, Bobaru F (2021) A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking. J Mech Phys Solids 146:104203. https://doi.org/10.1016/j.jmps.2020.104203

    Article  MathSciNet  Google Scholar 

  6. Diehl P, Lipton R, Wick T, Tyagi M (2022) A comparative review of peridynamics and phase-field models for engineering fracture mechanics. Comput Mech 69:1259–1293. https://doi.org/10.1007/s00466-022-02147-0

  7. Dahal B, Seleson P, Trageser J (2022) The evolution of the peridynamics co-authorship network. J Peridyn Nonlocal Model. https://doi.org/10.1007/s42102-022-00082-5

    Article  Google Scholar 

  8. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics review. Math Mech Solids 24(11):3714–3739. https://doi.org/10.1177/1081286518803411

    Article  MathSciNet  Google Scholar 

  9. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026

    Article  Google Scholar 

  10. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178. https://doi.org/10.1016/j.finel.2007.08.012

    Article  MathSciNet  Google Scholar 

  11. Madenci E, Guven I (2015) The finite element method and applications in engineering using ANSYS®. Springer

    Book  Google Scholar 

  12. Mehrmashhadi J, Bahadori M, Bobaru F (2020) On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Eng Fract Mech 240:107355. https://doi.org/10.1016/j.engfracmech.2020.107355

    Article  Google Scholar 

  13. Ren B, Wu CT (2018) A peridynamic model for damage prediction fiber-reinforced composite laminate. In 15th International LS-DYNA User Conference (p. 10). Michigan Detroit

  14. Parks ML, Littlewood DJ, Mitchell JA, Silling SA (2012) Peridigm users’ guide v1. 0.0. Sandia Report SAND2012-7800. https://doi.org/10.2172/1055619, https://www.osti.gov/servlets/purl/1055619

  15. Chen H, Hu Y, Spencer BW (2016) A MOOSE-based implicit peridynamic thermomechanical model. In ASME International Mechanical Engineering Congress and Exposition (Vol. 50633, p. V009T12A072). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2016-65552

  16. Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497. https://doi.org/10.1016/j.cma.2017.11.011

    Article  MathSciNet  Google Scholar 

  17. D’Elia M, Li X, Seleson P, Tian X, Yu Y (2021) A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics. J Peridyn Nonlocal Model 1–50. https://doi.org/10.1007/s42102-020-00038-7

  18. Shojaei A, Hermann A, Cyron CJ, Seleson P, Silling SA (2022) A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput Methods Appl Mech Eng 391:114544. https://doi.org/10.1016/j.cma.2021.114544

    Article  MathSciNet  Google Scholar 

  19. Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018) An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int J Mech Sci 144:600–617. https://doi.org/10.1016/j.ijmecsci.2018.06.020

    Article  Google Scholar 

  20. Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22. https://doi.org/10.1007/s10704-014-9970-4

    Article  Google Scholar 

  21. Jafarzadeh S, Larios A, Bobaru F (2020) Efficient solutions for nonlocal diffusion problems via boundary-adapted spectral methods. J Peridyn Nonlocal Model 2:85–110. https://doi.org/10.1007/s42102-019-00026-6

    Article  MathSciNet  Google Scholar 

  22. Jafarzadeh S, Wang L, Larios A, Bobaru F (2021) A fast convolution-based method for peridynamic transient diffusion in arbitrary domains. Comput Methods Appl Mech Eng 375:113633. https://doi.org/10.1016/j.cma.2020.113633

    Article  MathSciNet  Google Scholar 

  23. Jafarzadeh S, Mousavi F, Larios A, Bobaru F (2022) A general and fast convolution-based method for peridynamics: applications to elasticity and brittle fracture. Comput Methods Appl Mech Eng 392:114666. https://doi.org/10.1016/j.cma.2022.114666

    Article  MathSciNet  Google Scholar 

  24. Lopez L, Pellegrino SF (2022) A fast-convolution based space-time Chebyshev spectral method for peridynamic models. Adv Cont Discr Mod 2022:70. https://doi.org/10.1186/s13662-022-03738-0

  25. Lopez L, Pellegrino SF (2022) A nonperiodic Chebyshev spectral method avoiding penalization techniques for a class of nonlinear peridynamic models. Int J Numer Meth Eng 123(20):4859–4876. https://doi.org/10.1002/nme.7058

    Article  MathSciNet  Google Scholar 

  26. Lopez L, Pellegrino SF (2021) A spectral method with volume penalization for a nonlinear peridynamic model. Int J Numer Meth Eng 122(3):707–725. https://doi.org/10.1002/nme.6555

    Article  MathSciNet  Google Scholar 

  27. Lopez L, Pellegrino SF (2022) A space-time discretization of a nonlinear peridynamic model on a 2D lamina. Comput Math Appl 116:161–175. https://doi.org/10.1016/j.camwa.2021.07.004

    Article  MathSciNet  Google Scholar 

  28. Hu W, Ha YD, Bobaru F (2012) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217:247–261. https://doi.org/10.1016/j.cma.2012.01.016

    Article  MathSciNet  Google Scholar 

  29. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168. https://doi.org/10.1016/S0065-2156(10)44002-8

    Article  Google Scholar 

  30. Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. CRC Press

    Book  Google Scholar 

  31. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J Elast 113(2):193–217. https://doi.org/10.1007/s10659-012-9418-x

    Article  MathSciNet  Google Scholar 

  32. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184. https://doi.org/10.1007/s10659-007-9125-1

    Article  MathSciNet  Google Scholar 

  33. Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57. https://doi.org/10.1016/j.cma.2017.03.043

    Article  MathSciNet  Google Scholar 

  34. Behzadinasab M, Foster JT (2020) On the stability of the generalized, finite deformation correspondence model of peridynamics. Int J Solids Struct 182:64–76. https://doi.org/10.1016/j.ijsolstr.2019.07.030

    Article  Google Scholar 

  35. Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250. https://doi.org/10.1016/j.cma.2014.01.002

    Article  MathSciNet  Google Scholar 

  36. Zhao J, Jafarzadeh S, Chen Z, Bobaru F (2020) An algorithm for imposing local boundary conditions in peridynamic models on arbitrary domains. engrXiv Preprints. https://doi.org/10.31224/osf.io/7z8qr

    Article  Google Scholar 

  37. Le QV, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61(4):499–518. https://doi.org/10.1007/s00466-017-1469-1

    Article  MathSciNet  Google Scholar 

  38. Scabbia F, Zaccariotto M, Galvanetto U (2021) A novel and effective way to impose boundary conditions and to mitigate the surface effect in state-based Peridynamics. Int J Numer Meth Eng 122(20):5773–5811. https://doi.org/10.1002/nme.6773

    Article  MathSciNet  Google Scholar 

  39. Behera D, Roy P, Anicode SVK, Madenci E, Spencer B (2022) Imposition of local boundary conditions in peridynamics without a fictitious layer and unphysical stress concentrations. Comput Methods Appl Mech Eng 393:114734. https://doi.org/10.1016/j.cma.2022.114734

    Article  MathSciNet  Google Scholar 

  40. Aksoylu B, Celiker F, Kilicer O (2019) Nonlocal operators with local boundary conditions in higher dimensions. Adv Comput Math 45(1):453–492. https://doi.org/10.1007/s10444-018-9624-6

    Article  MathSciNet  Google Scholar 

  41. Wang L, Jafarzadeh S, Mousavi F, Bobaru F (2023) PeriFast/Corrosion: a 3D pseudo-spectral peridynamic Matlab code for corrosion. J Peridyn Nonlocal Model, (in this issue)

  42. Jafarzadeh S (2021) Novel and fast peridynamic models for material degradation and failure. Ph.D. dissertation. Mechanical and Materials Engineering, University of Nebraska-Lincoln

  43. Mousavi F, Jafarzadeh S, Bobaru F (2023) A fast convolution-based method for peridynamic models in plasticity and ductile fracture. Under review

  44. Mousavi F (2022) Novel and fast peridynamic models for large deformation and ductile failure. Ph.D. dissertation. Mechanical and Materials Engineering, University of Nebraska-Lincoln

  45. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. Int J Multiscale Comput Eng 9(6):635–659. https://doi.org/10.1615/IntJMultCompEng.2011002793

  46. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11):777–783. https://doi.org/10.1016/j.cpc.2008.06.011

    Article  Google Scholar 

  47. Silling SA (2010) Linearized theory of peridynamic states. J Elast 99(1):85–111. https://doi.org/10.1007/s10659-009-9234-0

    Article  MathSciNet  Google Scholar 

  48. tecplot (n.d.) https://www.tecplot.com/downloads/

  49. Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98. https://doi.org/10.1007/s10704-015-0056-8

    Article  Google Scholar 

  50. Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks. Int J Fract 26(3):189–200. https://doi.org/10.1007/BF01140627

    Article  Google Scholar 

  51. Xu Z, Zhang G, Chen Z, Bobaru F (2018) Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. Int J Fract 209(1–2):203–222. https://doi.org/10.1007/s10704-017-0256-5

    Article  Google Scholar 

  52. Bobaru F, Hu W (2012) The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int J Fract 176(2):215–222. https://doi.org/10.1007/s10704-012-9725-z

    Article  Google Scholar 

  53. Niazi S, Chen Z, Bobaru F (2021) Crack nucleation in brittle and quasi-brittle materials: a peridynamic analysis. Theor Appl Fract Mech 112:102855. https://doi.org/10.1016/j.tafmec.2020.102855

    Article  Google Scholar 

  54. Chen H, Spencer BW (2019) Peridynamic bond-associated correspondence model: stability and convergence properties. Int J Numer Meth Eng 117(6):713–727. https://doi.org/10.1002/nme.5973

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Science Foundation, USA under CMMI CDS&E Award No. 1953346, and by a Nebraska System Science award from the Nebraska Research Initiative.

Funding

National Science Foundation, USA under CMMI CDS&E Award No. 1953346.

Author information

Authors and Affiliations

Authors

Contributions

F.M. and S. J. implemented and tested the code. All authors revised the code. All authors wrote the manuscript draft. F.B. obtained funding, coordinated the project, and revised the manuscript.

Corresponding author

Correspondence to Florin Bobaru.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 7875 KB)

Supplementary file2 (MP4 6585 KB)

Supplementary file3 (MP4 10378 KB)

Appendix. Constitutive models included in PeriFast/Dynamics

Appendix. Constitutive models included in PeriFast/Dynamics

  1. 1.

    Linearized bond-based elastic material model

This model is basically the linearized version of the micro-elastic solid (see [47]). The internal force density for this material is

$${\varvec{L}}\left({\varvec{x}},t\right)= {\int }_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{{\prime}}\mu {\varvec{f}}\left({\varvec{x}},{{\varvec{x}}}^{\boldsymbol{{\prime}}},t\right)d{V}_{x{^{\prime}}}={\int }_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{{\prime}} \lambda {\lambda }^{{\prime}}\mathbf{C}\left({\varvec{\xi}}\right){\varvec{\eta}}d{V}_{x{^{\prime}}}$$
(A-1)

where \({\varvec{\xi}}\) Is the bond vector, \({\varvec{\eta}}\) is the relative displacement and \(\mathbf{C}\left(\xi \right)=\alpha \omega \left(\left|{\varvec{\xi}}\right|\right)\frac{{\varvec{\xi}}\otimes{\varvec{\xi}}}{{\left|{\varvec{\xi}}\right|}^{2}}\) with \(\alpha = \frac{12E}{\pi {\delta }^{4}}\) and \(\left(\left|{\varvec{\xi}}\right|\right)=\frac{1}{\left|{\varvec{\xi}}\right|}\).

And the strain energy density is

$$W\left({\varvec{x}},t\right)=\frac{1}{2}{\int }_{{\mathcal{H}}_{x{^{\prime}}}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}} \lambda {\lambda }^{^{\prime}}{\varvec{\eta}}.\left(\frac{1}{2}\mathbf{C}\left({\varvec{\xi}}\right){\varvec{\eta}}\right)d{V}_{x{^{\prime}}}$$
(A-2)

The convolutional form of the internal force density and strain energy density for linearized bond-based models (Eqs. (A-1) and (A-2)) used in this work are [23]

$${L}_{i}={\int }_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}} \lambda {\lambda }^{^{\prime}}{\mathrm{C}}_{ij}{\eta }_{j}d{V}_{x{^{\prime}}}= {\int }_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}} \lambda {\lambda }^{^{\prime}}{\mathrm{C}}_{ij}\left({u}_{j}^{^{\prime}}-{u}_{j}\right)d{V}_{{x}^{^{\prime}}}={\chi }_{\mathrm{B}}\lambda \left\{\left[{\mathrm{C}}_{\mathrm{ij}}*({\chi }_{\mathrm{B}}\lambda {u}_{j})\right]-[{\mathrm{C}}_{\mathrm{ij}}*{\chi }_{\mathrm{B}}\lambda ]{u}_{j}\right\}$$
(A-3)
$$W\left({\varvec{x}},t\right)=\frac{1}{2}{\int }_{{\mathcal{H}}_{x{^{\prime}}}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}} \lambda {\lambda }^{^{\prime}}{\eta }_{i}\left(\frac{1}{2}{\mathrm{C}}_{\mathrm{ij}}{\eta }_{j}\right)d{V}_{x{^{\prime}}}=\frac{1}{4} {\chi }_{\mathrm{B}}\lambda \left(\left[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda {u}_{i}{u}_{j}\right]-2\left[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda {u}_{i}\right]{u}_{j}+\left[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda \right]{u}_{i}{u}_{j}\right)$$
(A-4)
  1. 2.

    Linearized state-based elastic material model

This model is the linearized version of the native state-based linear elastic solid (see [47]). The internal force density for this material is

$${\varvec{L}}\left({\varvec{x}},t\right)= {\int}_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}}\mu {\varvec{f}}\left({\varvec{x}},{{\varvec{x}}}^{\boldsymbol{^{\prime}}},t\right)d{V}_{x{^{\prime}}}={\int}_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}}\mu (\underset{\_}{\mathbf{T}}\left[{\varvec{x}},t\right]\langle {\varvec{\xi}}\rangle -\underset{\_}{\mathbf{T}}\left[{\varvec{x}}\boldsymbol{^{\prime}},t\right]\langle -{\varvec{\xi}}\rangle )d{V}_{x{^{\prime}}}$$
(A-5)

where

$$\underset{\_}{\mathbf{T}}\langle {\varvec{\xi}}\rangle =\left(\frac{3k-5G}{m}\right)\omega \left(\left|{\varvec{\xi}}\right|\right)\vartheta{\varvec{\xi}}+\frac{15G}{m}\omega \left(\left|{\varvec{\xi}}\right|\right)\frac{{\varvec{\xi}}\otimes{\varvec{\xi}}}{{\left|{\varvec{\xi}}\right|}^{2}}{\varvec{\eta}}$$
(A-6)

where \(k\) and \(G\) here are the bulk and shear moduli, respectively, and \(\vartheta\) is the a nonlocal dilation [47].

The strain energy density for this linearized state-base material model is [47]

$$W\left({\varvec{x}},t\right)=\frac{1}{2}\left(\left(k-\frac{\alpha m}{9}\right){\vartheta }^{2}+\alpha {\int}_{{\mathcal{H}}_{x}}\mu \omega \left(\left|{\varvec{\xi}}\right|\right){\varvec{\eta}}.\frac{{\varvec{\xi}}\otimes{\varvec{\xi}}}{{\left|{\varvec{\xi}}\right|}^{2}}{\varvec{\eta}}d{V}_{{x}^{^{\prime}}} \right),\alpha =\frac{15G}{m}$$
(A-7)

Note: by adopting a Poisson ratio of one-quarter, the first terms on the right-hand side of Eq. (A-6) and (A-7) vanish and the linearized bond-based model presented by Eq. (A-1) and (A-2) is recovered for the points in the bulk as explained in Section 5.6.

The convolution structures for \(\vartheta\) and \(m\) are derived in [23]. Let \(\mathbf{C}\left({\varvec{\xi}}\right)=30G \omega \left(\left|{\varvec{\xi}}\right|\right)\frac{{\varvec{\xi}}\otimes{\varvec{\xi}}}{{\left|{\varvec{\xi}}\right|}^{2}}\) and \({\varvec{a}}\left({\varvec{\xi}}\right)=\omega \left(\left|{\varvec{\xi}}\right|\right){\varvec{\xi}}\) with \(\left(\left|{\varvec{\xi}}\right|\right)=\frac{1}{\left|{\varvec{\xi}}\right|}\), the convolution structure for internal force density and strain energy density (Eqs. (A-6) and (A-7)) obtained as [23].

$${L}_{i}={\chi }_{\mathrm{B}}\lambda \left(\left(\frac{3k-5G}{m}\right)\left(-\vartheta \left[{a}_{i}* {\chi }_{\mathrm{B}}\lambda \right]-\left[{a}_{i}*{\chi }_{\mathrm{B}}\lambda \vartheta \right]\right)+\frac{1}{m} \left({[\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda {u}_{j}]-[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda ]{u}_{j}\right)\right)$$
(A-8)
$$\begin{aligned}W\left({\varvec{x}},t\right)&=\frac{1}{2}\left(\left(k-\frac{\alpha m}{9}\right){\vartheta }^{2}+\frac{1}{2m}{\int}_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}}\lambda {\lambda }^{^{\prime}}{\eta }_{i}{\mathrm{C}}_{ij}{\eta }_{j} d{V}_{{x}^{^{\prime}}} \right)\\&=\frac{1}{2}\left(\left(k-\frac{\alpha m}{9}\right){\vartheta }^{2}+\frac{1}{2m}{\int}_{{\mathcal{H}}_{x}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}}\lambda {\lambda }^{^{\prime}}{\mathrm{C}}_{ij}({u}_{i}^{^{\prime}}{u}_{j}^{^{\prime}}-{u}_{i}^{^{\prime}}{u}_{j}-{u}_{i}{u}_{j}^{^{\prime}}+{u}_{i}{u}_{j}) d{V}_{{x}^{^{\prime}}} \right)\\&= \frac{1}{2}\left(\left(k-\frac{\alpha m}{9}\right){\vartheta }^{2}+\frac{1}{2m}{\chi }_{\mathrm{B}}\lambda \left\{\left[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda {u}_{i}{u}_{j}\right]-{u}_{j}\left[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda {u}_{i}\right]-{u}_{i}\left[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda {u}_{j}\right]+{u}_{i}{u}_{j}[{\mathrm{C}}_{ij}*{\chi }_{\mathrm{B}}\lambda ]\right\}\right)\end{aligned}$$
(A-9)

The details on deriving the convolutional structure for linearized bond-based and state-based models are provided in [23].

  1. 3.

    PD correspondence hyperelastic material model

This model uses the correspondence formulation introduced in [32], and uses the classical Saint–Venant-Kirchhoff hyperelastic constitutive law. The internal force density for this material is

$${\varvec{L}}({\varvec{x}},t) ={\int}_{\mathcal{H}}{\chi }_{\mathrm{B}}{\chi }_{B}^{^{\prime}}\mu \left(\underset{\_}{\mathbf{T}}\langle {\varvec{\xi}}\rangle -\underset{\_}{\mathbf{T}\mathbf{^{\prime}}}\langle -{\varvec{\xi}}\rangle \right) \mathrm{d}{V}_{x{^{\prime}}}$$
(A-10)

where

$$\underset{\_}{\mathbf{T}}\langle {\varvec{\xi}}\rangle = \omega \left(\left|{\varvec{\xi}}\right|\right){\varvec{\sigma}}\left(\overline{\mathbf{F} }\right){\mathbf{K}}^{-1}{\varvec{\xi}}$$
(A-11)

\(\mathbf{K}\) is the shape tensor and \({\varvec{\sigma}}\) is the first Piola–Kirchhoff (P-K) stress tensor which is in terms of \(\overline{\mathbf{F} }\),the PD deformation gradient and defined based on the classical constitutive model that we use (for details on the correspondence formulation please see [32]). One issue encountered when using a PD correspondence model for problems with cracks is material instabilities in the form of zero energy modes. A number of solutions have been proposed to reduce/eliminate these zero energy modes. For a review of various strategies for stabilizing PD correspondence models please see [54]. In this work we use the method introduced in [33] in which a stabilizing term (\(\underset{\_}{{\mathbf{T}}^{\mathbf{s}}}\langle {\varvec{\xi}}\rangle\)) is added to the force state formulation \(\underset{\_}{{\mathbf{T}}^{\mathbf{c}}}\langle {\varvec{\xi}}\rangle\) as follows:

$$\begin{array}{l}\underline{\mathbf{T}}\langle {\varvec{\xi}}\rangle =\underline{{\mathbf{T}}^{\mathbf{c}}}\langle {\varvec{\xi}}\rangle + \underline{{\mathbf{T}}^{\mathbf{s}}}\langle {\varvec{\xi}}\rangle = \omega \left(\left|{\varvec{\xi}}\right|\right) \left({\varvec{\sigma}}\left(\overline{\mathbf{F}}\right){\mathbf{K}}^{-1}{\varvec{\xi}}+\boldsymbol{ }\frac{GC}{{\omega }_{0}}\underline{\mathbf{z}}\langle {\varvec{\xi}}\rangle \right) ,\;\underline{\mathbf{z}}\langle {\varvec{\xi}}\rangle =\underline{\mathbf{Y}}\langle {\varvec{\xi}}\rangle -\overline{\mathbf{F}}{\varvec{\xi}},\\{\omega }_{0}={\int}_{\mathcal{H}}\omega (\left|{\varvec{\xi}}\right|)\mathrm{d}{V}_{{\varvec{\xi}}} ,\;C=18k/\pi {\delta }^{5}\end{array}$$
(A-12)

For the Saint–Venant Kirchhoff model used in this study we have

$$\mathbf{S}=\lambda tr\left(\mathbf{E}\right)\mathbf{I}+2G\mathbf{E}$$
(A-13)

where \(\mathbf{S}\) is the second P-K stress tensor and needed to be converted to the first P-K (\({\varvec{\sigma}}\))stress tensor to be used in Eq. (A-11). \(\mathbf{E}\) is the Lagrangian Green strain tensor, and \(\lambda\) and \(G\) are the Lamé constant and shear modulus of the material. \(\mathbf{I}\) is the identity tensor.

For the PD correspondence model, we use the classical formulation to compute the strain energy density as \(W\left(x,t\right)=\frac{1}{2}\mathbf{S}\left({\varvec{x}},t\right):\mathbf{E}({\varvec{x}},t)\).

Let \({\varvec{a}}\left({\varvec{\xi}}\right)=\omega \left(\left|{\varvec{\xi}}\right|\right){\varvec{\xi}}\), \(\omega \left(\left|{\varvec{\xi}}\right|\right)=\frac{1}{\left|{\varvec{\xi}}\right|}\) and\(\beta = \frac{GC}{{\omega }_{0}}\), then the convolutional form for the internal force density in the PD correspondence model (Eq. A-10)) is

$$\begin{aligned}{L}_{i}&= {-\chi }_{\mathrm{B}}\lambda \left({\sigma }_{ij}{\mathrm{K}}_{\mathrm{jp}}^{-1}\left[{a}_{p}*{\chi }_{\mathrm{B}}\lambda \right]+\left[{\sigma }_{ij}{\mathrm{K}}_{\mathrm{jp}}^{-1}{*\chi }_{\mathrm{B}}\lambda {a}_{p}\right]\right.\\&\quad\left.-\beta \left(-2\left[{\chi }_{\mathrm{B}}\lambda *{a}_{i}\right]-2\left[{\chi }_{\mathrm{B}}\lambda *\omega \right]{u}_{i}+2\left[{\chi }_{\mathrm{B}}\lambda {u}_{i}*\omega \right]+{\overline{\mathrm{F}} }_{ij}\left[{a}_{j}{*\chi }_{\mathrm{B}}\lambda \right]+[{\chi }_{\mathrm{B}}\lambda {\overline{\mathrm{F}} }_{ij}*{a}_{j}]\right)\right)\end{aligned}$$
(A-14)

The detailed derivation of the convolutional form of the PD-correspondence model is given in [42] (see Section 10.3.4 there), and [43, 44].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarzadeh, S., Mousavi, F., Wang, L. et al. PeriFast/Dynamics: A MATLAB Code for Explicit Fast Convolution-based Peridynamic Analysis of Deformation and Fracture. J Peridyn Nonlocal Model 6, 33–61 (2024). https://doi.org/10.1007/s42102-023-00097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-023-00097-6

Keywords

Navigation