Skip to main content
Log in

An Element-Based Peridynamic Model for Elastic and Fracture Analysis of Composite Lamina

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An element-based peridynamic (EBPD) model for composite lamina is proposed to solve the displacement field, stress field, and crack propagation problems. The continuous change of material properties with the angle, such as the composite lamina with any fiber orientation, can be realized by the EBPD model. The model also defines the non-local stress and non-local strain, which can introduce damage criteria of continuum mechanics. The reducing element scheme is also introduced to improve the computation efficiency. The effectiveness of the model is demonstrated by a series of examples, including the displacement analysis, stress analysis, and crack growth of the composite lamina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Nguyen VP, Rabczuk T, Bordas S et al (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MathSciNet  MATH  Google Scholar 

  2. Liew KM, Zhao X, Ferreira AJM (2011) A review of meshless methods for laminated and functionally graded plates and shells. Compos Struct 93(8):2031–2041

    Article  Google Scholar 

  3. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  4. Silling SA, Epton M, Weckner O et al (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  5. Diehl P, Prudhomme S, Lévesque M (2019) A review of benchmark experiments for the validation of peridynamics models. J Peridyn Nonlocal Model 1(1):14–35

    Article  MathSciNet  Google Scholar 

  6. Rabczuk T, Ren H (2017) A peridynamics formulation for quasi-static fracture and contact in rock. Eng Geol 225:42–48

    Article  Google Scholar 

  7. Wang Y, Zhou X, Wang Y et al (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115

    Article  Google Scholar 

  8. Nowruzpour M, Reddy JN (2018) Unification of local and nonlocal models within a stable integral formulation for analysis of defects. Int J Eng Sci 132:45–59

    Article  MathSciNet  MATH  Google Scholar 

  9. Ni T, Zaccariotto M, Zhu QZ et al (2019) Static solution of crack propagation problems in Peridynamics. Comput Methods Appl Mech Eng 346:126–151

    Article  MathSciNet  MATH  Google Scholar 

  10. Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22

    Article  Google Scholar 

  11. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    Article  MathSciNet  MATH  Google Scholar 

  12. Shojaei A, Mossaiby F, Zaccariotto M et al (2018) An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int J Mech Sci 144:600–617

    Article  Google Scholar 

  13. Lipton RP, Lehoucq RB, Jha PK (2019) Complex fracture nucleation and evolution with nonlocal elastodynamics. J Peridyn Nonlocal Model 1(2):122–130

    Article  MathSciNet  Google Scholar 

  14. Karpenko O, Oterkus S, Oterkus E (2020) Influence of different types of small-size defects on propagation of macro-cracks in brittle materials. J Peridyn Nonlocal Model 2(3):289–316

    Article  MathSciNet  Google Scholar 

  15. Liu S, Fang G, Liang J et al (2021) A coupling method of non-ordinary state-based peridynamics and finite element method. Eur J Mech A Solids 85:104075

    Article  MathSciNet  MATH  Google Scholar 

  16. Oterkus S, Madenci E, Agwai A (2014) Fully coupled peridynamic thermomechanics. J Mech Phys Solids 64:1–23

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang Y, Zhou X, Kou M (2019) An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks. Eur J Mech A Solids 73:282–305

    Article  MathSciNet  MATH  Google Scholar 

  18. Song Y, Li S, Zhang S (2021) Peridynamic modeling and simulation of thermo-mechanical De-icing process with modified ice failure criterion. Def Technol 17(1):15-35

  19. Bazazzadeh S, Mossaiby F, Shojaei A (2020) An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Eng Frac Mech 223:106708

    Article  Google Scholar 

  20. Hu W, Ha Y D, Bobaru F (2011) Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Int J Multiscale Comput Eng 9(6):707–726

  21. Oterkus E, Madenci E (2012) Peridynamic analysis of fiber-reinforced composite materials. J Mech Mater Struct 7(1):45–84

    Article  Google Scholar 

  22. Oterkus E, Madenci E, Weckner O et al (2012) Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos Struct 94(3):839–850

    Article  Google Scholar 

  23. Ghajari M, Iannucci L, Curtis P (2014) A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput Methods Appl Mech Eng 276:431–452

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou W, Liu D, Liu N (2017) Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model. Eng Fract Mech 178:60–76

    Article  Google Scholar 

  25. Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90(2):141–151

    Article  Google Scholar 

  26. Yu Y, Wang H (2014) Peridynamic analytical method for progressive damage in notched composite laminates. Compos Struct 108:801–810

    Article  Google Scholar 

  27. Colavito K, Barut A, Madenci E et al (2013) Residual strength of composite laminates with a hole by using peridynamic theory[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

  28. Madenci E, Oterkus E (2014) Peridynamic theory and its applications, Springer

  29. Diyaroglu C, Oterkus E, Madenci E et al (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23

    Article  Google Scholar 

  30. Gao Y, Oterkus S (2019) Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory. Compos Struct 207:397–424

    Article  Google Scholar 

  31. Zhang H, Qiao P (2019) A state-based peridynamic model for quantitative elastic and fracture analysis of orthotropic materials. Eng Fract Mech 206:147–171

    Article  Google Scholar 

  32. Hattori G, Trevelyan J, Coombs WM (2018) A non-ordinary state-based peridynamics framework for anisotropic materials. Comput Methods Appl Mech Eng 339:416–442

    Article  MathSciNet  MATH  Google Scholar 

  33. Fang G, Liu S, Liang J et al (2021) A stable non-ordinary state-based peridynamic model for laminated composite materials. Int J Numer Meth Eng 122(2):403–430

    Article  MathSciNet  Google Scholar 

  34. Chen H (2018) Bond-associated deformation gradients for peridynamic correspondence model. Mech Res Commun 90:34–41

    Article  Google Scholar 

  35. Yaghoobi A, Chorzepa MG (2017) Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics. Comput Struct 188:63–79

    Article  Google Scholar 

  36. Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57

    Article  MathSciNet  MATH  Google Scholar 

  37. Luo J, Sundararaghavan V (2018) Stress-point method for stabilizing zero-energy modes in non-ordinary state-based peridynamics. Int J Solids Struct 150:197–207

    Article  Google Scholar 

  38. Gu X, Zhang Q, Madenci E et al (2019) Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. Comput Methods Appl Mech Eng 357:112592

  39. Liu S, Fang G, Liang J et al (2020) A new type of peridynamics: Element-based peridynamics. Comput Methods Appl Mech Eng 366:113098

  40. Hu YL, Madenci E (2016) Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct 153:139–175

    Article  Google Scholar 

  41. Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber reinforced materials. J Compos Mater 7(4):448–464

    Article  Google Scholar 

  42. Xucheng W (2003) Finite Element Method, Tsinghua University Press

  43. Cahill LMA, Natarajan S, Bordas SPA et al (2014) An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos Struct 107:119–130

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12090030, 11672089 and 11732002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Fang, G., Liang, J. et al. An Element-Based Peridynamic Model for Elastic and Fracture Analysis of Composite Lamina. J Peridyn Nonlocal Model 4, 527–554 (2022). https://doi.org/10.1007/s42102-021-00059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-021-00059-w

Keywords

Navigation