Skip to main content
Log in

Small area estimation of general parameters: Bayesian transformed spatial prediction approach

  • Original Paper
  • Spatial statistics
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

For estimating area-specific parameters such as poverty indicators in a finite population, estimators based only on the area-specific samples have typically high variability due to small sample sizes, and model-based methods are recognized to be useful to increase the accuracy of the estimation by borrowing information from related areas. This article proposes an Bayesian approach to this problem based on random effects models. To address the non-normality of response variables and possible spatial correlations among geographically neighboring areas, we introduce random effects models with a parametric family of transformations and spatially correlated random area effects. We assign prior distributions on unknown parameters including transformation and spatial correlation parameters and provide an efficient posterior computation algorithm for estimation and inference for area-specific population parameters via Markov Chain Monte Carlo. We demonstrate the performance of the proposed methods together with existing methods through simulation and empirical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data (2nd ed.). Boca Raton: Chapman & Hall.

    Book  Google Scholar 

  • Battese, G., Harter, R., & Fuller, W. (1988). An error-components model for prediction of county crop areas using survey and satellite data. Journal of the American Statistical Association, 83, 28–36.

    Article  Google Scholar 

  • Chambers, R., Chandra, H., Salvati, N., & Tzavidis, N. (2014). Outliner robust small area estimation. Journal of the Royal Statistical Society Series B, 76, 47–69.

    Article  Google Scholar 

  • Foster, J., Greer, J., & Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica, 52, 761–766.

    Article  Google Scholar 

  • Hall, P., & Maiti, T. (2006). On parametric bootstrap methods for small area prediction. Journal of the Royal Statistical Society Series B, 68, 221–238.

    Article  MathSciNet  Google Scholar 

  • Jiang, J., & Lahiri, P. (2006). Estimation of finite population domain means: A model-assisted empirical best prediction approach. Journal of the American Statistical Association, 101, 301–311.

    Article  MathSciNet  Google Scholar 

  • Lahiri, P., & Mukherjee, K. (2007). On the design consistency property of hierarchical bayes estimators in finite population sampling. The Annals of Statistics, 35, 724–737.

    Article  MathSciNet  Google Scholar 

  • Molina, I., & Marhuenda, Y. (2015). SAE: An R package for small area estimation. The R Journal, 7, 81–98.

    Article  Google Scholar 

  • Molina, I., & Martin, N. (2018). Empirical best prediction under a nested error model with log transformation. The Annals of Statistics, 46, 1961–1993.

    Article  MathSciNet  Google Scholar 

  • Molina, I., Nandram, B., & Rao, J. N. K. (2014). Small area estimation of general parameters with application to poverty indicators: A hierarchical bayes approach. The Annals of Applied Statistics, 8, 852–885.

    Article  MathSciNet  Google Scholar 

  • Molina, I., & Rao, J. N. K. (2010). Small area estimation of poverty indicators. Canadian Journal of Statistics, 38, 369–385.

    Article  MathSciNet  Google Scholar 

  • Pratesi, M., & Salvati, N. (2008). Small area estimation: The eblup estimator based on spatially correlated random area effects. Statistical Methods and Applications, 17, 113–141.

    Article  MathSciNet  Google Scholar 

  • Pratesi, M., & Salvati, N. (2009). Small area estimation in the presence of correlated random area effects. Journal of Official Statistics, 25, 37–53.

    Google Scholar 

  • Rao, J. N. K., & Molina, I. (2015). Small Area Estimation (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Schmid, T., Tzavidis, N., Münnich, R., & Chambers, R. (2016). Outlier robust small-area estimation under spatial correlation. Scandinavian Journal of Statistics, 43, 806–826.

    Article  MathSciNet  Google Scholar 

  • Slud, E., & Maiti, T. (2006). Mean-squared error estimation in transformed fay-herriot models. Journal of the Royal Statistical Society Series B, 68, 239–257.

    Article  MathSciNet  Google Scholar 

  • Sugasawa, S., & Kubokawa, T. (2017). Transforming response values in small area prediction. Computational Statistics and Data Analysis, 114, 47–60.

    Article  MathSciNet  Google Scholar 

  • Sugasawa, S., & Kubokawa, T. (2019). Adaptively transformed mixed model prediction of general finite population parameters. Scandinavian Journal of Statistics, 46, 1025–1046.

    Article  MathSciNet  Google Scholar 

  • Yang, Z. L. (2006). A modified family of power transformations. Economics Letters, 92, 14–19.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant-in-Aid for Japanese Society for Promotion of Science (KAKENHI) Grant numbers 18K12757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shonosuke Sugasawa.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugasawa, S. Small area estimation of general parameters: Bayesian transformed spatial prediction approach. Jpn J Stat Data Sci 3, 167–181 (2020). https://doi.org/10.1007/s42081-019-00067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-019-00067-7

Keywords

Navigation