Skip to main content
Log in

Multivariate skew distributions with mode-invariance through the transformation of scale

  • Original Paper
  • Information Theory and Statistics
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

The skew-symmetric distribution is often-used as a skew distribution, but it is not always unimodal even when the underlying distribution is unimodal. Recently, another type of skew distribution was proposed using the transformation of scale (ToS). It is always unimodal and shows the monotonicity of skewness. In this paper, a multivariate skew distribution is considered using the ToS. The skewness for the multivariate skew distribution is proposed and the monotonicity of skewness is shown. The proposed multivariate skew dist ribution is more flexible than the conventional multivariate skew-symmetric distributions. This is illustrated in numerical examples. Additional properties are also presented, including random number generation, half distribution, parameter orthogonality, non-degenerated Fisher information, entropy maximization distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arellano-Valle, R. B., & Azzalini, A. (2008). The centred parametrization for the multivariate skew-normal distribution. Journal of Multivariate Analysis, 99, 1362–1382.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171–178.

    MathSciNet  MATH  Google Scholar 

  • Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics, 32, 159–200.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A., & Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 579–602.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A., & Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65, 367–389.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715–726.

    Article  MathSciNet  Google Scholar 

  • Cook, R. D., & Weisberg, S. (1994). An introduction to regression graphics. New York: Wiley.

    Book  Google Scholar 

  • Critchley, F., & Jones, M. C. (2008). Asymmetry and gradient asymmetry functions: density-based skewness and kurtosis. Scandinavian Journal of Statistics, 35, 415–437.

    Article  MathSciNet  Google Scholar 

  • Fujisawa, H., & Abe, T. (2015). A family of skew distributions with mode-invariance through transformation of scale. Statistical Methodology, 25, 89–98.

    Article  MathSciNet  Google Scholar 

  • Genton, M. G. (Ed.). (2004). Skew-elliptical distributions and their applications. Boca Raton, FL: Chapman & Hall.

    MATH  Google Scholar 

  • Hallin, M., & Ley, C. (2012). Skew-symmetric distributions and fisher information-a tale of two densities. Bernoulli, 18, 747–763.

    Article  MathSciNet  Google Scholar 

  • Jones, M. C. (2014). Generating distributions by transformation of scale. Statistica Sinica, 24, 749–771.

    MathSciNet  MATH  Google Scholar 

  • Jones, M. C. (2016). On bivariate transformation of scale distributions. Communications in Statistics-Theory and Methods, 45, 577–588.

    Article  MathSciNet  Google Scholar 

  • Jones, M. C., & Pewsey, A. (2009). Sinh-arcsinh distributions. Biometrika, 96, 761–780.

    Article  MathSciNet  Google Scholar 

  • Ley, C., & Paindaveine, D. (2010). On the singularity of multivariate skew-symmetric models. Journal of Multivariate Analysis, 101, 1434–1444.

    Article  MathSciNet  Google Scholar 

  • Ma, Y., & Genton, M. G. (2004). Flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics, 31, 459–468.

    Article  MathSciNet  Google Scholar 

  • Pewsey, A. (2000). Problems of inference for azzalini’s skewnormal distribution. Journal of Applied Statistics, 27, 859–870.

    Article  Google Scholar 

  • Wang, J., Boyer, J., & Genton, M. G. (2004). A skew-symmetric representation of multivariate distributions. Statistica Sinica, 14, 1259–1270.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Toshihiro Abe was supported in part by JSPS KAKENHI Grant Number 19K11869 and Nanzan University Pache Research Susidy I-A-2 for the 2019 academic year. Hironori Fujisawa was supported in part by JSPS KAKENHI Grant Number 17K00065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation of \(\partial \xi /\partial \lambda _j\) and \(\partial \xi /\partial a\)

Derivation of \(\partial \xi /\partial \lambda _j\) and \(\partial \xi /\partial a\)

The differential of a with respect to \(\lambda _j\) is given by

$$\begin{aligned} \frac{\partial a}{\partial \lambda _j} = - \frac{\partial \xi }{\partial \lambda _j} \Bigg / \frac{\partial \xi }{\partial a} . \end{aligned}$$

The numerator of \(\partial a/\partial \lambda _j\) is

$$\begin{aligned} \frac{\partial \xi }{\partial \lambda _j}=\frac{\partial }{\partial \lambda _j} f(\varvec{r}(a \varvec{z}_0;{\varvec{\lambda }})) = \frac{\partial f}{\partial \varvec{y}'} \frac{\partial \varvec{r}}{\partial \lambda _j}. \end{aligned}$$

Let \(\varvec{r}(\varvec{x};{\varvec{\lambda }})=\varvec{y}({\varvec{\lambda }})\). We have

$$\begin{aligned} \varvec{x}=\varvec{s}(\varvec{y}({\varvec{\lambda }});{\varvec{\lambda }})=\varvec{y}({\varvec{\lambda }}) + \varvec{H}(\varvec{y}({\varvec{\lambda }});{\varvec{\lambda }}). \end{aligned}$$

The differential of the above with respect to \(\lambda _j\) is

$$\begin{aligned} \varvec{0}= \frac{\partial \varvec{y}}{\partial \lambda _j} + \frac{\partial \varvec{H}}{\partial \varvec{y}'} \frac{\partial \varvec{y}}{\partial \lambda _j} + \frac{\partial \varvec{H}}{\partial \lambda _j}. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{\partial \varvec{y}}{\partial \lambda _j} = - \left( I + \frac{\partial \varvec{H}}{\partial \varvec{y}'}\right) ^{-1} \frac{\partial \varvec{H}}{\partial \lambda _j}. \end{aligned}$$

Therefore, the numerator of \(\partial a_+/\partial \lambda _j\) is given by

$$\begin{aligned} \frac{\partial \xi }{\partial \lambda _j} = - \frac{\partial f}{\partial \varvec{y}'} \left( I + \frac{\partial \varvec{H}}{\partial \varvec{y}'}\right) ^{-1} \frac{\partial \varvec{H}}{\partial \lambda _j}. \end{aligned}$$

The denominator of \(\partial a/\partial \lambda _j\) is

$$\begin{aligned} \frac{\partial \xi }{\partial a} = \frac{\partial f}{\partial \varvec{y}'} \frac{\partial \varvec{r}}{\partial \varvec{x}'} \varvec{z}_0. \end{aligned}$$

Let \(\varvec{r}(\varvec{x};{\varvec{\lambda }})=\varvec{y}(\varvec{x})\). We have

$$\begin{aligned} \varvec{x}=\varvec{s}(\varvec{y}(\varvec{x});{\varvec{\lambda }})=\varvec{y}(\varvec{x}) + \varvec{H}(\varvec{y}(\varvec{x});{\varvec{\lambda }}). \end{aligned}$$

The differential of the above with respect to \(\varvec{x}\) is

$$\begin{aligned} I= \frac{\partial \varvec{y}}{\partial \varvec{x}'} + \frac{\partial \varvec{H}}{\partial \varvec{y}'} \frac{\partial \varvec{y}}{\partial \varvec{x}'}. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{\partial \varvec{y}}{\partial \varvec{x}'}= \left( I + \frac{\partial \varvec{H}}{\partial \varvec{y}'} \right) ^{-1}. \end{aligned}$$

Therefore, the denominator of \(\partial a_+/\partial \lambda _j\) is given by

$$\begin{aligned} \frac{\partial \xi }{\partial \lambda _j} = \frac{\partial f}{\partial \varvec{y}'} \left( I + \frac{\partial \varvec{H}}{\partial \varvec{y}'}\right) ^{-1} \varvec{z}_0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T., Fujisawa, H. Multivariate skew distributions with mode-invariance through the transformation of scale. Jpn J Stat Data Sci 2, 529–544 (2019). https://doi.org/10.1007/s42081-019-00047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-019-00047-x

Keywords

Navigation