Item response and response time model for personality assessment via linear ballistic accumulation

Abstract

On the basis of a combination of linear ballistic accumulation (LBA) and item response theory (IRT), this paper proposes a new class of item response models, namely LBA IRT, which incorporates the observed response time (RT) by means of LBA. Our main objective is to develop a simple yet effective alternative to the diffusion IRT model, which is one of best-known RT-incorporating IRT models that explicitly models the underlying psychological process of the elicited item response. Through a simulation study, we show that the proposed model enables us to obtain the corresponding parameter estimates compared with the diffusion IRT model while achieving a much faster convergence speed. Furthermore, the application of the proposed model to real personality measurement data indicates that it fits the data better than the diffusion IRT model in terms of its predictive performance. Thus, the proposed model exhibits good performance and promising modeling capabilities in terms of capturing the cognitive and psychometric processes underlying the observed data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Annis, J., Miller, B. J., & Palmeri, T. J. (2016). Bayesian inference with Stan: A tutorial on adding custom distributions. Behavior Research Methods, 48, 1–24.

    Article  Google Scholar 

  2. Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. B. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). New York: Academic Press.

    Google Scholar 

  3. Brown, A., & Maydeu-Olivares, A. (2011). Item response modeling of forced choice questionnaires. Educational and Psychological Measurement, 71, 460–502.

    Article  Google Scholar 

  4. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.

    Article  Google Scholar 

  5. Condon, D. M., & Revelle, W. (2015). Selected personality data from the SAPA-Project: On the structure of phrased self-report items. Journal of Open Psychology Data, 3, e6.

    Article  Google Scholar 

  6. Deuter, M., Bradbery, J., & Turnbull, J. (2015). Oxford advanced learner’s dictionary (9th ed.). London: Oxford University Press.

    Google Scholar 

  7. Donkin, C., Brown, S., Heathcore, A., & Wagenmakers, E. J. (2011). Diffusion versus linear ballistic accumulation: Different models but the same conclusions about psychological processes? Psychonomic Bulletin & Review, 18, 61–69.

    Article  Google Scholar 

  8. Feller, W. (1968). Random walk and ruin problems. In W. Feller (Ed.), An introduction to probability theory and its applications (3rd ed., Vol. 1, pp. 342–371). New York: Wiley.

  9. Ferrando, P. J. (2007). A Pearson-type-VII item response model for assessing person fluctuation. Psychometrika, 72, 25–41.

    MathSciNet  MATH  Article  Google Scholar 

  10. Ferrando, P. J., & Lorenzo-Seva, U. (2007). An item response theory model for incorporating response time data in binary personality items. Applied Psychological Measurement, 31, 525–543.

    MathSciNet  Article  Google Scholar 

  11. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). New York: CRC Press.

    Google Scholar 

  12. Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y. S. (2008). A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics, 2, 1360–1383.

    MathSciNet  MATH  Article  Google Scholar 

  13. Grice, G. R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359–373.

    Article  Google Scholar 

  14. Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An introduction to good practices in cognitive modeling. In B. U. Forstmann & E.-J. Wagenmakers (Eds.), An introduction to model-based cognitive neuroscience. Berlin: Springer Science & Business Media.

    Google Scholar 

  15. Heathcote, A., & Hayes, B. (2012). Diffusion versus linear ballistic accumulation: Different models for response time with different conclusions about psychological mechanisms? Canadian Journal of Experimental Psychology, 66, 125–136.

    Article  Google Scholar 

  16. Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Frontiers in Psychology, 3, 292.

    Article  Google Scholar 

  17. Kuncel, R. B. (1973). Response process and relative location of subject and item. Educational and Psychological Measurement, 33, 545–563.

    Article  Google Scholar 

  18. Laming, D. R. J. (1968). Information theory of choice reaction time. New York: Wiley.

    Google Scholar 

  19. Leite, F. P., & Ratcliff, R. (2011). What cognitive process drive response biases? A diffusion model analysis. Judgment and Decision Making, 6, 651–687.

    Google Scholar 

  20. Luce, R. D. (1986). Response times. New York: Oxford University Press.

    Google Scholar 

  21. Molenaar, D., Tuerlinckx, F., & van der Maas, H. L. J. (2015). Fitting diffusion item response theory models for responses and response times using the R package diffIRT. Journal of Statistical Software, 66, 1–34.

    Article  Google Scholar 

  22. Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    MathSciNet  MATH  Article  Google Scholar 

  23. Okada, K., Vandekerckhove, J., & Lee, M. D. (2018). Modeling when people quit: Bayesian censored geometric models with hierarchical and latent-mixture extensions. Behavior Research Methods, 50, 406–415.

    Article  Google Scholar 

  24. Palada, H., Neal, A., Vuckovic, A., Martin, R., Samuels, K., & Heathcote, A. (2016). Evidence accumulation in a complex task: Making choices about concurrent multiattribute stimuli under time pressure. Journal of Experimental Psychology: Applied, 22, 1–23.

    Google Scholar 

  25. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

    Article  Google Scholar 

  26. Ratcliff, R., Thapar, A., & Mckoon, G. (2007). Application of the diffusion model to two-choice tasks for adults 75–90 years old. Psychology and Aging, 22, 56–66.

    Article  Google Scholar 

  27. Reddi, B. A. J., & Carpenter, R. H. (2000). The influence of decision time on performance. Nature Neuroscience, 3, 827–830.

    Article  Google Scholar 

  28. Roscam, E. E. (1987). Toward a psychometric theory of intelligence. In E. E. Roscam & R. Suck (Eds.), Progress in mathematical psychology (pp. 151–174). Amsterdam: North-Holland.

    Google Scholar 

  29. Roscam, E. E. (1997). Models for speed and time-limit tests. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 187–208). Berlin: Springer Science & Business Media.

    Google Scholar 

  30. Stone, M. (1960). Models for choice-reaction time. Psychometrika, 25, 251–260.

    MATH  Article  Google Scholar 

  31. Thissen, D. (1983). Timed testing: An approach using item response theory. In D. J. Weiss (Ed.), New horizons in testing: Latent trait test theory and computerized adapting testing (pp. 179–203). New York: Academic Press.

    Google Scholar 

  32. Tuerlinckx, F., & De Boeck, P. (2005). Two interpretations of the discrimination parameter. Psychometrika, 70, 629–650.

    MathSciNet  MATH  Article  Google Scholar 

  33. Tuerlinckx, F., Molenaar, D., & van der Maas, H. L. J. (2016). Diffusion-based response-time models. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of item response theory, volume one: Models (pp. 283–300). Boca Raton: Chapman & Hall/CRC Press.

    Google Scholar 

  34. van der Linden, W. J. (2016). Lognormal response-time model. In W. J. van der Linden (Ed.), Handbook of item response theory, volume one: Models (pp. 261–282). Boca Raton: Chapman & Hall/CRC Press.

    Google Scholar 

  35. van der Maas, H. L. J., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118, 339–356.

    Article  Google Scholar 

  36. van der Maas, H. L. J., & Wagenmakers, E.-J. (2005). A psychometric analysis of chess expertise. The American Journal of Psychology, 118, 29–60.

    Google Scholar 

  37. van Ravenzwaaij, D., & Oberauer, K. (2009). How to use the diffusion model: Parameter recovery of three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53, 463–473.

    MathSciNet  Article  Google Scholar 

  38. Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432.

    MathSciNet  MATH  Article  Google Scholar 

  39. Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60, 385–402.

    Article  Google Scholar 

  40. Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14, 3–22.

    Article  Google Scholar 

  41. Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.

    MathSciNet  MATH  Google Scholar 

  42. Watanabe, S. (2013). A widely applicable Bayesian information criterion. Journal of Machine Learning Research, 14, 867–897.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by Japan Society for the Promotion of Science (Grant nos. JP17J07674, JP17H04787) and Okawa Foundation Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyosuke Bunji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The R and Stan codes used in this study can be found at https://osf.io/ck7fr/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bunji, K., Okada, K. Item response and response time model for personality assessment via linear ballistic accumulation. Jpn J Stat Data Sci 2, 263–297 (2019). https://doi.org/10.1007/s42081-019-00040-4

Download citation

Keywords

  • Item response theory
  • Response time
  • Diffusion model
  • Linear ballistic accumulation