Bayesian change point problem for traffic intensity in \(M/E_r/1\) queueing model

Abstract

In this paper, we study the change point problem for the \(M/E_r/1\) queueing system. Bayesian estimators of parameter and the change point are derived under different loss functions using both the informative (beta prior) and non-informative priors (Jeffreys prior). Also empirical Bayes procedure is used to compute the parameters. Simulation and data analysis on real life are given to illustrate the results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abramowitz, M., & Stegun, L. A. (1964). Handbook of Mathematical Functions. New York: Dover Publ.

    Google Scholar 

  2. Acharya, S. K., & Villarreal, C. E. (2013). Change point estimation of service rate in \(M/M/1\) queue. International Journal of Mathematics in Operational Research, 5(1), 110–120.

    MathSciNet  Article  Google Scholar 

  3. Almeida, M.A.C. & Cruz, F.R.B. (2017). A note on Bayesian estimation of traffic intensity in single-server Markovian queues. Communications in Statistics – Simulation and Computation. https://doi.org/10.1080/03610918.2017.1353614.

  4. Armero, C. (1994). Bayesian inference in Markovian Queues. Queueing Systems, 15, 419–426.

    MathSciNet  Article  Google Scholar 

  5. Barry, D., & Hartigan, J. A. (1993). A Bayesian analysis for change point problems. Journal of the American Statistical Association, 88(421), 309–319.

    MathSciNet  MATH  Google Scholar 

  6. Broemeling, L. D. (1972). Bayesian procedure for detecting a change in a sequence of random variables. Metron, 30, 214–227.

    MATH  Google Scholar 

  7. Calabria, R., & Pulcini, G. (1994). An engineering approach to Bayes estimation for the Weibull distribution. Microelectronics Reliability, 34, 789–802.

    Article  Google Scholar 

  8. Chernoff, H., & Zacks, S. (1964). Estimating the current mean of a normal distribution which is subject to change in time. The Annals of Mathematical Statistics, 35(3), 999–1018.

    Article  Google Scholar 

  9. Chowdhury, S., & Maiti, S. (2014). Bayesian Estimation of Traffic Intensity in an \(M/E_r/1\) Queueing model. Research & Reviews: Journal of Statistics, 1, 99–106.

    Google Scholar 

  10. Chowdhury, S. (2010). Estimation in queueing models. Ph.d. Thesis. Doctoral Thesis at Calcutta University. http://hdl.handle.net/10603/159874.

  11. Guttman, I., & Menzefriche, U. (1982). On the use of loss-functions in the change point problem. Annals of the Institute of Statistical Mathematics, 34, 319–326.

    MathSciNet  Article  Google Scholar 

  12. Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables. Biometrika, 57, 1–17.

    MathSciNet  Article  Google Scholar 

  13. Hsu, D. A. (1979). Detecting shifts of parameter in gamma sequences with applications to stock prices and air traffic flow analysis. Journal of the American Statistical Association, 74, 31–40.

    Article  Google Scholar 

  14. Jain, S. (1995). Estimating changes in traffic intensity for \(M/M/1\) queueing systems. Microelectronics Reliability, 35(11), 1395–1400.

    Article  Google Scholar 

  15. Jain, S. (2001). Estimating the change point of Erlang interarrival time distribution. INFOR, 39(2), 200–207.

    Google Scholar 

  16. Lee, C. B. (1998). Bayesian analysis of a change point in exponential families with application. Computational Statistics & Data Analysis, 27, 195–208.

    MathSciNet  Article  Google Scholar 

  17. McGrath, M. F., Gross, D., & Singpurwalla, N. D. (1987). A subjective Bayesian approach to the theory of queues \(I-\)Modelling. Queueing System, 1, 317–333.

    Article  Google Scholar 

  18. McGrath, M. F., & Singpurwalla, N. D. (1987). A subjective Bayesian approach to the theory of queues \(II-\)Inference and Information in \(M/M/1\) queues. Queueing System, 1, 335–353.

    MathSciNet  Article  Google Scholar 

  19. Muddapur, M. V. (1972). Bayesian Estimation of parameters in some queueing models. Institute of Mathematical Statistics, 24, 327–331.

    MathSciNet  Article  Google Scholar 

  20. Norstrom, J. G. (1996). The use of precautionary loss function in risk analysis. IEEE Transactions on Reliability, 45(3), 400–403.

    Article  Google Scholar 

  21. Raftery, A. E., & Akman, V. E. (1986). Bayesian analysis of a Poisson process with a change-point. Biometrika, 73, 85–89.

    MathSciNet  Article  Google Scholar 

  22. Smith, A. F. M. (1975). A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika, 62, 407–416.

    MathSciNet  Article  Google Scholar 

  23. Thiruvaiyaru, D., & Basawa, I. V. (1992). Empirical Bayes estimation for queueing systems and networks. Queueing Systems, 11, 179–202.

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous referees for their precious comments which led to significant improvement in the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saroja Kumar Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Acharya, S.K. Bayesian change point problem for traffic intensity in \(M/E_r/1\) queueing model. Jpn J Stat Data Sci 2, 49–70 (2019). https://doi.org/10.1007/s42081-018-0026-2

Download citation

Keywords

  • Change point
  • Bayesian estimation
  • Squared error loss function
  • Precautionary loss function
  • General entropy loss function

Mathematics Subject Classification

  • 60K25
  • 62F15