Skip to main content
Log in

Multiplicity adjustment for temporal and spatial scan statistics using Markov property

  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

We discuss computation of the conditional expectation in a multinomial distribution. The problem is motivated by the evaluation of the multiplicity-adjusted p-value of scan statistics in spatial epidemiology. We propose a recursive summation/integration technique using the Markov property, which is extracted from a chordal graph defined by temporal and spatial structures. This methodology can be applied to a class of distributions, including the Poisson distribution (that is, the conditional distribution is the multinomial). To illustrate the approach, we present the real data analyses for detecting temporal and spatial clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badsberg, J. H., & Malvestuto, F. M. (2001). An implementation of the iterative proportional fitting procedure by propagation trees. Computational Statistics and Data Analysis, 37(3), 297–322.

    Article  MathSciNet  Google Scholar 

  • Blair, J. R. S., & Peyton, B. W. (1993). An introduction to chordal graphs and clique trees. In A. George, J. R. Gilbert, & J. W. H. Liu (Eds.), Graph theory and sparse matrix computation (pp. 1–29). New York: Springer.

    Google Scholar 

  • Buneman, P. (1974). A characterization on rigid circuit graphs. Discrete Mathematics, 9(3), 205–212.

    Article  MathSciNet  Google Scholar 

  • Cowell, R. G., Dawid, P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks and expert systems: Exact computational methods for Bayesian networks. New York: Springer.

    MATH  Google Scholar 

  • Fukuda, M., Kojima, M., Murota, K., & Nakata, K. (2000). Exploiting sparsity in semidefinite programming via matrix completion I: General framework. SIAM Journal on Optimizations, 11(3), 647–674.

    Article  MathSciNet  Google Scholar 

  • Hara, H., & Takemura, A. (2006). Boundary cliques, clique trees and perfect sequences of maximal cliques of a chordal graph. (arXiv:cs/0607055).

  • Hara, H., & Takemura, A. (2010). A localization approach to improve iterative proportional scaling in Gaussian graphical models. Communications in Statistics: Theory and Methods, 39(8–9), 1643–1654.

    Article  Google Scholar 

  • Hirotsu, C., & Marumo, K. (2002). Changepoint analysis as a method for isotonic inference. Scandinavian Journal of Statistics, 29(1), 125–138.

    Article  MathSciNet  Google Scholar 

  • Kjærulff, U. (1992). Optimal decomposition of probabilistic networks by simulated annealing. Statistics and Computing, 2(1), 7–17.

    Article  Google Scholar 

  • Koyama, T., Nakayama, H., Nishiyama, K., & Takayama, N. (2014). Holonomic gradient descent for the Fisher-Bingham distribution on the \(d\)-dimensional sphere. Computational Statistics, 29(3–4), 661–683.

    Article  MathSciNet  Google Scholar 

  • Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26(6), 1481–1496.

    Article  MathSciNet  Google Scholar 

  • Kulldorff, M. (2006). Tests of spatial randomness adjusted for an inhomogeneity: A general framework. Journal of the American Statistical Association, 101(475), 1289–1305.

    Article  MathSciNet  Google Scholar 

  • Kuriki, S., Shimodaira, H., & Hayter, A. J. (2002). The isotonic range statistic for testing against an ordered alternative. Journal of Statistical Planning and Inference, 105(2), 347–362.

    Article  MathSciNet  Google Scholar 

  • Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Neff, N. D., & Naus, J. I. (1980). Selected tables in mathematical statistics: The distribution of the size of the maximum cluster of points on a line (Vol. VI). Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Parter, S. (1961). The use of linear graphs in Gauss elimination. SIAM Review, 3(2), 119–130.

    Article  MathSciNet  Google Scholar 

  • Redfern, D., & Campbell, C. (1998). The MATLAB 5 handbook. New York: Springer.

    Book  Google Scholar 

  • Rose, J. D. (1971). A graph theoretic study of the numerical solution of sparse positive definite. In R. C. Read (Ed.), Graph theory and computing (pp. 183–217). New York: Academic Press.

    Google Scholar 

  • Tango, T. (1984). The detection of disease clustering in time. Biometrics, 40(1), 15–26.

    Article  MathSciNet  Google Scholar 

  • Tango, T. (2010). Statistical methods for disease clustering. New York: Springer.

    Book  Google Scholar 

  • Tango, T., Yokoyama, T., & Takahashi, K. (2012). Introduction to spatial epidemiology: Disease mapping and disease clustering (in Japanese). Tokyo: Asakura.

    Google Scholar 

  • Takahashi K., Yokoyama T., & Tango T. (2013). FleXScan: software for the flexible scan statistic. https://sites.google.com/site/flexscansoftware/. Accessed 1 May 2018.

  • Wallenstein, S. (1980). A test for detection of clustering over time. American Journal of Epidemiology, 111(3), 367–372.

    Article  Google Scholar 

  • Wallenstein, S., & Naus, J. I. (1973). Probabilities for a \(k\)th nearest neighbor problem on the line. The Annals of Probability, 1(1), 188–190.

    Article  Google Scholar 

  • Worsley, K. J. (1986). Confidence regions and tests for a change-point in a sequence of exponential family random variables. Biometrika, 73(1), 91–104.

    Article  MathSciNet  Google Scholar 

  • Xu, P. F., Guo, J. H., & He, X. (2011). An improved iterative proportional scaling procedure for Gaussian graphical models. Journal of Computational and Graphical Statistics, 20(2), 417–431.

    Article  MathSciNet  Google Scholar 

  • Xu, P. F., Guo, J. H., & Tang, M. L. (2012). An improved Hara-Takamura procedure by sharing computations on junction tree in Gaussian graphical models. Statistics and Computing, 22(5), 1125–1133.

    Article  MathSciNet  Google Scholar 

  • Xu, P. F., Guo, J. H., & Tang, M. L. (2014). A localized implementation of the iterative proportional scaling procedure for Gaussian graphical models. Journal of Computational and Graphical Statistics, 24(1), 205–229.

    Article  MathSciNet  Google Scholar 

  • Yamashita, N. (2008). Sparse quasi-Newton updates with positive definite matrix completion. Mathematical Programming, 115(1), 1–30.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Takashi Tsuchiya, Anthony J. Hayter, Nobuki Takayama, and Yi-Ching Yao for their helpful comments. They also thank the Editor and the two referees for their constructive and insightful comments. This work was supported by JSPS KAKENHI Grant nos. 21500288 and 24500356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kuriki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriki, S., Takahashi, K. & Hara, H. Multiplicity adjustment for temporal and spatial scan statistics using Markov property. Jpn J Stat Data Sci 1, 191–213 (2018). https://doi.org/10.1007/s42081-018-0007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-018-0007-5

Keywords

Mathematics Subject Classification

Navigation