Skip to main content

Analytical solution to logarithmic spiral trajectories with circumferential thrust and mission applications

Abstract

This study made use of a shape-based method to analyze the orbital dynamics of a spacecraft subject to a continuous propulsive acceleration acting along the circumferential direction. Under the assumption of a logarithmic spiral trajectory, an exact solution to the equations of motion exists, which allows the spacecraft state variables and flight time to be expressed as a function of the angular coordinate. There is also a case characterized by specific initial conditions in which the time evolution of the state variables may be analytically determined. In this context, the presented solution is used to analyze circle-to-circle trajectories, where the combination of two impulsive maneuvers and a logarithmic spiral path are used to accomplish the transfer. The determined results are then applied to the achievement of the Earth—Mars and the Earth—Venus transfers using actual data from a recent thruster developed by NASA.

References

  1. Circi, C. Mars and Mercury missions using solar sails and solar electric propulsion. Journal of Guidance, Control, and Dynamics, 2004, 27(3): 496–498.

    Article  Google Scholar 

  2. Del Monte, M., Meles, R., Circi, C. Optimization of interplanetary trajectories using the colliding bodies optimization algorithm. International Journal of Aerospace Engineering, 2020: 9437378.

  3. Markopoulos, N. Analytically exact non-Keplerian motion for orbital transfers. In: Proceedings of the AIAA/AAS Astrodynamics Conference, Scottsdale, AZ, USA, 1994: AIAA-94-3758-CP.

  4. Petropoulos, A. E., Sims, J. A. A review of some exact solutions to the planar equations of motion of a thrusting spacecraft. In: Proceedings of the 2nd International Symposium on Low-Thrust Trajectory, Toulouse, France, 2002.

  5. McInnes, C. R. Orbits in a generalized two-body problem. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 743–749.

    Article  Google Scholar 

  6. Tsien, H. S. Take-off from satellite orbit. Journal of the American Rocket Society, 1953, 23(4): 233–236.

    Article  Google Scholar 

  7. Benney, D. J. Escape from a circular orbit using tangential thrust. Journal of Jet Propulsion, 1958, 28(3): 167–169.

    Article  Google Scholar 

  8. Boltz, F. W. Orbital motion under continuous tangential thrust. Journal of Guidance, Control, and Dynamics, 1992, 15(6): 1503–1507.

    Article  Google Scholar 

  9. Battin, R. H. An Introduction to the Mathematics and Methods of Astrodynamics, revised edn. Reston, VA, USA: American Institute of Aeronautics & Astronautics, 1999.

    MATH  Google Scholar 

  10. Quarta, A. A., Mengali, G. Analysis of spacecraft motion under constant circumferential propulsive acceleration. Acta Astronautica, 2014, 105(1): 278–284.

    Article  Google Scholar 

  11. Roa, J., Peláez, J., Senent, J. New analytic solution with continuous thrust: Generalized logarithmic spirals. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2336–2351.

    Article  Google Scholar 

  12. Niccolai, L., Quarta, A. A., Mengali, G. Orbital motion approximation with constant circumferential acceleration. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1783–1789.

    Article  Google Scholar 

  13. Quarta, A. A., Mengali, G., Caruso, A. Optimal circle-to-rectilinear orbit transfer with circumferential thrust. Astrodynamics, 2019, 3(1): 31–43.

    Article  Google Scholar 

  14. Bassetto, M., Quarta, A. A., Mengali, G., Cipolla, V. Trajectory analysis of a Sun-facing solar sail with optical degradation. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1727–1732.

    Article  Google Scholar 

  15. Bassetto, M., Boni, L., Mengali, G., Quarta, A. A. Electric sail phasing maneuvers with radial thrust. Acta Astronautica, 2021, 179: 99–104.

    Article  Google Scholar 

  16. Bassetto, M., Quarta, A. A., Mengali, G. Trajectory approximation of a passively actuated solar balloon in near-Earth mission scenarios. Acta Astronautica, 2021, 188: 451–462.

    Article  Google Scholar 

  17. Bacon, R. H. Logarithmic spiral: An ideal trajectory for the interplanetary vehicle with engines of low sustained thrust. American Journal of Physics, 1959, 27(3): 164–165.

    Article  Google Scholar 

  18. Tsu, T. C. Interplanetary travel by solar sail. ARS Journal, 1959, 29(6): 422–427.

    Article  Google Scholar 

  19. McInnes, C. R. Chapter 4, Solar sail orbital dynamics. In: Solar Sailing: Technology, Dynamics and Mission Applications. London: Springer, 1999: 129–136.

    Chapter  Google Scholar 

  20. Petropoulos, A. E., Longuski, J. M. Shape-based algorithm for the automated design of low-thrust, gravity assist trajectories. Journal of Spacecraft and Rockets, 2004, 41(5): 787–796.

    Article  Google Scholar 

  21. Taheri, E., Abdelkhalik, O. Shape based approximation of constrained low-thrust space trajectories using Fourier series. Journal of Spacecraft and Rockets, 2012, 49(3): 535–546.

    Google Scholar 

  22. Bassetto, M., Niccolai, L., Quarta, A. A., Mengali, G. Logarithmic spiral trajectories generated by solar sails. Celestial Mechanics and Dynamical Astronomy, 2018, 130(2): 18.

    MathSciNet  Article  Google Scholar 

  23. Gong, S. P., Macdonald, M. Review on solar sail technology. Astrodynamics, 2019, 3(2): 93–125.

    Article  Google Scholar 

  24. Bassetto, M., Quarta, A. A., Mengali, G., Cipolla, V. Spiral trajectories induced by radial thrust with applications to generalized sails. Astrodynamics, 2021, 5(2): 121–137.

    Article  Google Scholar 

  25. Andrews, G. E, Askey, R., Roy, R. The hypergeometric functions. In: Special Functions. Cambridge: Cambridge University Press, 1999: 61–123.

    Chapter  Google Scholar 

  26. Forbes, G. F. The trajectory of a powered rocket in space. Journal of the British Interplanetary Society, 1950, 9(2): 75–79.

    Google Scholar 

  27. Li, X. Y., Qiao, D., Chen, H. B. Interplanetary transfer optimization using cost function with variable coefficients. Astrodynamics, 2019, 3(2): 173–188.

    Article  Google Scholar 

  28. Caruso, A., Quarta, A. A., Mengali, G. Comparison between direct and indirect approach to solar sail circle-to-circle orbit raising optimization. Astrodynamics, 2019, 3(3): 273–284.

    Article  Google Scholar 

  29. Alfano, S., Thorne J. D. Circle-to-circle constant-thrust orbit raising. Journal of the Astronautical Sciences, 1994, 42(1): 35–45.

    Google Scholar 

  30. Vallado, D. A. Fundamentals of Astrodynamics and Applications, 2nd edn. Springer, 2001: 358–374.

  31. Quarta, A. A., Mengali, G. Semi-analytical method for the analysis of solar sail heliocentric orbit raising. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 330–335.

    Article  Google Scholar 

  32. Luo, Z. F., Topputo, F. Mars orbit insertion via ballistic capture and aerobraking. Astrodynamics, 2021, 5(2): 167–181.

    Article  Google Scholar 

  33. Patterson, M., Haag, T., Foster, J., Rawlin, V., Roman, R., Soulas, G. Development status of a 5/10-kW class ion engine. In: Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 2001: AIAA 2001–3489.

  34. Patterson, M., Benson, S. NEXT ion propulsion system development status and performance. In: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 2007: AIAA 2007–5199.

  35. Quarta, A. A., Izzo, D., Vasile, M. Time-optimal trajectories to circumsolar space using solar electric propulsion. Advances in Space Research, 2013, 51(3): 411–422.

    Article  Google Scholar 

  36. Mereta, A., Izzo, D. Target selection for a small low-thrust mission to near-Earth asteroids. Astrodynamics, 2018, 2(3): 249–263.

    Article  Google Scholar 

Download references

Funding

Open Access funding provided by University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bassetto.

Additional information

Marco Bassetto received his Ph.D. degree in civil and industrial engineering at the Department of Civil and Industrial Engineering of the University of Pisa, Italy. From January 2020 to June 2021, he was the holder of a scholarship entitled “Dynamic analysis and control of an E-sail” at the same department, where he has been a research fellow since July 2021. His research activity focuses on the trajectory design and attitude control of spacecraft propelled with low-thrust propulsion systems such as solar sails and electric solar wind sails. E-mail: marco.bassetto@ing.unipi.it.

Alessandro A. Quarta received his Ph.D. degree in aerospace engineering from the University of Pisa, Italy, in 2005 and, currently, he is a professor of flight mechanics at the Department of Civil and Industrial Engineering of the University of Pisa, Italy. His main research areas include spaceflight simulation, spacecraft mission analysis and design, low-thrust trajectory optimization, solar sail, and E-sail dynamics and control. E-mail: a.quarta@ing.unipi.it.

Giovanni Mengali received his Doctor Engineer degree in aeronautical engineering in 1989 from the University of Pisa, Italy. Since 1990, he has been with the Department of Aerospace Engineering (now Department of Civil and Industrial Engineering) of the University of Pisa, first as a Ph.D. student, then as an assistant and an associate professor. Currently, he is a professor of space flight mechanics. His main research areas include spacecraft mission analysis, trajectory optimization, solar sails, electric sails, and aircraft flight dynamics and control. E-mail: g.mengali@ing.unipi.it.

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bassetto, M., Quarta, A.A. & Mengali, G. Analytical solution to logarithmic spiral trajectories with circumferential thrust and mission applications. Astrodyn (2022). https://doi.org/10.1007/s42064-022-0135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42064-022-0135-3

Keywords

  • circumferential thrust
  • logarithmic spiral trajectory
  • circle-to-circle transfer