Skip to main content

Review on solar sail technology

Abstract

This paper reviews solar sail trajectory design and dynamics, attitude control, and structural dynamics. Within the area of orbital dynamics, methods relevant to transfer trajectory design and non-Keplerian orbit generation are discussed. Within the area of attitude control, different control strategies, including utilisation of solar radiation pressure and conventional actuators, are discussed. Finally, the methods of modelling structural dynamics during and after deployment are discussed, before considering possible future trends in developing of solar sailing missions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Zander’s. Problems of flight by jet propulsion: Interplanetary flights, was translated by NASA. See NASA Technical Translation F-147 (1964); specifically, Section 7: Flight Around a Planet’s Satellite for Accelerating or Decelerating Spaceship, 1925, 290–292.

    Google Scholar 

  2. [2]

    Prince, J. L. H., Powell, R. W., Murri, D. Autonomous aerobraking: A design, development, and feasibility study. AAS 11-473, NASA Langley Research Center, 2011.

    Google Scholar 

  3. [3]

    Available at: https://doi.org/spaceflightsystems.grc.nasa.gov/SSPO/FactSheets/ACAP%20Fact%20Sheet.pdf.

  4. [4]

    Janhunen, P. Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 2004, 20(4): 763–764.

    Google Scholar 

  5. [5]

    Zubrin, R. M., Andrews, D. G. Magnetic sails and interplanetary travel. Journal of Spacecraft and Rockets, 1991, 28(2): 197–203.

    Google Scholar 

  6. [6]

    Maxwell, J. C. A treatise on electricity and magnetism, Clarendon Press, 1873.

    Google Scholar 

  7. [7]

    Lebedew, P. The physical causes of the deviations from Newton's law of gravitation. Astrophysical Journal, 1902, 16: 155–161.

    Google Scholar 

  8. [8]

    Nichols, E. F., Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Physics Review (Series I), 1901, 13(5): 307–320.

    Google Scholar 

  9. [9]

    Nichols, E. F., Hull, G. F. The pressure due to radiation. Astrophysical Journal, 1903, 17: 315.

    Google Scholar 

  10. [10]

    Tsiolkovsky, K. E. Extension of man into outer space. In: Proceedings of Symposium Jet Propulsion No.2, 1936.

    Google Scholar 

  11. [11]

    Tsander, K. From a scientific heritage. NASA Technical Translation No. TTF-541, NASA, 1967.

    Google Scholar 

  12. [12]

    Tsiolkovsky, K. E. Exploration of the universe with reaction machines. The Science Review, 1903(5).

    Google Scholar 

  13. [13]

    Oberth, H. Die rakete zu den planetenräumen, R. Oldenbourg, 1923, 86–88.

    MATH  Google Scholar 

  14. [14]

    Oberth, H. Wege zur raumschiffahrt. R. Oldenbourg, 1929, 353–371.

    Google Scholar 

  15. [15]

    Wiley, C. (Pseudonym: Sanders, R.), ‘Clipper ships of space’. Astounding Science Fiction, 1951, 136–143.

    Google Scholar 

  16. [16]

    MacNeal, R. H. Comparison of the solar sail with electric propulsion systems. NASA CR-1986, National Aeronautics and Space Administration, 1972.

    Google Scholar 

  17. [17]

    McInnes, C. R. Solar sail mission applications for non-Keplerian orbits. Acta Astronautica, 1999, 45(4–9): 567–575.

    Google Scholar 

  18. [18]

    Sohn, R. L. Attitude stabilization by means of solar radiation pressure. ARS Journal, 1959, 29(5): 371–373.

    Google Scholar 

  19. [19]

    Renner, U. Attitude control by solar sailing-a promising experiment with OTS-2. European Space Agency Journal, 1979, 3: 35–40.

    Google Scholar 

  20. [20]

    Modi, V. J. On the semi-passive attitude control and propulsion of space vehicles using solar radiation pressure. Acta Astronautica, 1995, 35(2–3): 231–246.

    Google Scholar 

  21. [21]

    Acord, J. D., Nicklas, J. C. Theoretical and practical aspects of solar pressure attitude control for interplanetary spacecraft. In: Proceedings of Guidance and Control Conference, 1964, 73–101.

    Google Scholar 

  22. [22]

    Shirley, D. L. The mariner 10 mission to Venus and mercury. In: Proceedings of the New Face of Space Selected Proceedings of the 53rd International Astronautical Federation Congress, 2002.

    Google Scholar 

  23. [23]

    O’Shaughnessy, D. J., McAdams, J. V., Williams, K. E., Page, B. R. Fire sail: Messenger’s use of solar radiation pressure for accurate mercury flybys. AAS 09-014, 2009.

    Google Scholar 

  24. [24]

    David, J. Sailing to the world’s most famous comet. Story of Lightsail-Part 1. Available at: https://doi.org/sail.planetary.org/story-part-1.html.

  25. [25]

    Znamya (satellite). Available at: https://doi.org/en.wikipedia.org/wiki/Znamya (satellite).

  26. [26]

    Alexander, A. Japanese researchers successfully test unfurling of solar sail on rocket flight. Planetary News, 2004-08-10.

    Google Scholar 

  27. [27]

    Lovgren, S. Solar sail spacecraft set for launch. National Geographic News, 2005-06-20.

    Google Scholar 

  28. [28]

    Leipold, M., Eiden, M., Garner, C. E., Herbeck, L., Kassing, D., Niederstadt, T., Krüger, T., Pagel, G., Rezazad, M., Rozemeijer, H. et al. Solar sail technology development and demonstration. In: Selected Proceedings of the 4th IAA International Conference on Low Cost Planetary Missions, 2003.

    Google Scholar 

  29. [29]

    Seboldt, W., Leipold, M., Rezazad, M., Herbeck, L., Unkenbold, W., Kassing, D., Eiden, M. Ground-based demonstration of solar sail technology. In: Proceedings of the 51st International Astronautical Congress, 2000.

    Google Scholar 

  30. [30]

    Seefeldt, P. A stowing and deployment strategy for large membrane space systems on the example of Gossamer-1. Advances in Space Research, 2017, 60(6): 1345–1362.

    Google Scholar 

  31. [31]

    Seefeldt, P., Spietz, P., Sproewitz, T., Grundmann, J. T., Hillebrandt, M., Hobbie, C., Ruffer, M., Straubel, M., Tóth, N., Zander, M. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft. Advances in Space Research, 2017, 59(1): 434–456.

    Google Scholar 

  32. [32]

    Dachwald, B., Boehnhardt, H., Broj, U., Geppert, U. R. M. E., Grundmann, J. T., Seboldt, W., Seefeldt, P., Spietz, P., Johnson, L., Kührt, E. et al. Gossamer roadmap technology reference study for a multiple NEO rendezvous mission. Advances in Solar Sailing, 2014.

    Google Scholar 

  33. [33]

    Peloni, A., Ceriotti, M., Dachwald, B. Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2712–2724.

    Google Scholar 

  34. [34]

    West, J. L., Derbès, B. Solar sail vehicle system design for the geostorm warning mission. In: Proceedings of the AIAA Space 2000 Conference and Exposition, 2000.

    Google Scholar 

  35. [35]

    Price, H., Ayon, J., Garner, C., Klose, G., Mettler, E., Sprague, G. Design for a solar sail demonstration mission. In: Proceedings of Space Technology and Applications International Forum, 2001.

    Google Scholar 

  36. [36]

    Murphy, D. M., Murphey, T. W., Gierow, P. A. Scalable solar sail subsystem design considerations. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.

    Google Scholar 

  37. [37]

    Garner, C., Diedrich, B., Leipold, M. A summary of solar sail technology developments and proposed demonstration missions. In: Proceedings of the 35th Joint Propulsion Conference and Exhibit, 1999.

    Google Scholar 

  38. [38]

    Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. L. NanoSail-D: The first flight demonstration of solar sails for nanosatellites. In: Proceedings of the 22nd Annual AIAA/USU Conference on Small Satellites, 2008.

    Google Scholar 

  39. [39]

    Johnson, L., Young, R., Montgomery, E., Alhorn, D. Status of solar sail technology within NASA. In: Proceedings of the 2nd International Symposium on Solar Sailing, 2010.

    Google Scholar 

  40. [40]

    NASA’s first solar sail NanoSail-D deploys in low-Earth orbit. NASA, Small Satellite Missions. Available at: https://doi.org/www.nasa.gov/mission_pages/smallsats/11-010.html.

  41. [41]

    Wall, M. World’s largest solar sail to launch in November 2014. Available at: https://doi.org/www.space.com/21556-sunjammer-solar-sail-launch-2014.html.

  42. [42]

    McNutt, L., Johnson, L., Clardy, D., Castillo-Rogez, J., Frick, A., Jones, L. Near-earth asteroid scout. Available at: https://doi.org/ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012882.pdf.

  43. [43]

    NEA-Scout, Gunter’s Space Page. Available at: https://doi.org/space.skyrocket.de/doc_sdat/nea-scout.htm.

  44. [44]

    Mori, O., Sawada, H., Funase, R., Morimoto, M., Endo, T., Yamamoto, T., Tsuda, Y., Kawakatsu, Y., Kawaguchi, J. IKAROS demonstration team and solar sail working group, first solar power sail demonstration by IKAROS. In: Proceedings of the 27th International Symposium on Space Technology and Science, 2009.

    Google Scholar 

  45. [45]

    Okada, T., Kebukawa, Y., Aoki, J., Matsumoto, J., Yano, H., Iwata, T., Mori, O., Bibring, J. P., Ulamec, S., Jaumann R. et al. Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail. Planetary and Space Science, 2018, 161: 99–106.

    Google Scholar 

  46. [46]

    LightSail: A solar sailing spacecraft from the planetary society. Available at: https://doi.org/sail.planetary.org/.

  47. [47]

    DeOrbitSail (DOS) Nanosatellite mission. Available at: https://doi.org/directory.eoportal.org/web/eoportal/satellite-missions/d/deorbitsail.

  48. [48]

    Trofimov, S. P., Ovchinnikov, M. Y. Performance scalability of square solar sails. Journal of Spacecraft and Rockets, 2018, 55(1): 242–246.

    Google Scholar 

  49. [49]

    Derbes, B., Veal, G., Rogan, J., Chafer, C. Team encounter solar sails. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.

    Google Scholar 

  50. [50]

    Johnson, L., Young, R., Montgomery, E., Alhorn, D. Status of solar sail technology within NASA. Advances in Space Research, 2011, 48(11): 1687–1694.

    Google Scholar 

  51. [51]

    Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, 309(5738): 1215–1219.

    Google Scholar 

  52. [52]

    Drexler, K. E. Design of a high performance solar sail system. Master Dissertation, Massachusetts Institute of Technology, Massachusetts, USA, 1977.

    Google Scholar 

  53. [53]

    Young, R. M., Montgomery, E. E., Adams, C. L. TRL assessment of solar sail technology development following the 20-meter system ground demonstrator hardware testing. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.

    Google Scholar 

  54. [54]

    Grundmann, J. T., Bauer, W., Biele, J., Boden, R., Ceriotti, M., Cordero, F., Dachwald, B., Dumont, E., Grimm, C. D., Herčík, D. et al. Capabilities of Gossamer-1 derived small spacecraft solar sails carrying MASCOT-derived nanolanders for in-situ surveying of NEAs. Acta Astronautica, in press, DOI: https://doi.org/10.1016/J.ACTAASTRO.2018.03.019.

  55. [55]

    Garwin, R. Solar sailing: A practical method of propulsion within the solar system. Jet Propulsion, 1958, 28(123): 188–190.

    Google Scholar 

  56. [56]

    Tsu, T. C. Interplanetary travel by solar sail. ARS Journal, 1959, 29(6): 422–427.

    Google Scholar 

  57. [57]

    London, H. S. Some exact solutions of the equations of motion of a solar sail with constant sail setting. Journal of the American Rocket Society, 1960, 30: 198–200.

    MATH  Google Scholar 

  58. [58]

    van der Ha, J. C., Modi, V. J. Long-term evaluation of three-dimensional heliocentric solar sail trajectories with arbitrary fixed sail setting. Celestial Mechanics, 1979, 19(2): 113–138.

    MATH  Google Scholar 

  59. [59]

    Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishechenko, E. F. The mathematical theory of optimal processes, Wiley, 1962.

    Google Scholar 

  60. [60]

    Macdonald, M., McInnes, C. R. Analytical control laws for planet-centered solar sailing. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 1038–1048.

    Google Scholar 

  61. [61]

    Coverstone, V. L., Prussing J. E. Technique for escape from geosynchronous transfer orbit using a solar sail. Journal of Guidance, Control, and Dynamics, 2003, 26(4): 628–634.

    Google Scholar 

  62. [62]

    Kim, M. Continuous low-thrust trajectory optimization: Techniques and applications. Master Dissertation, Virginia Polytechnic Institute and State University, Virginia, USA, 2005.

    Google Scholar 

  63. [63]

    Gong, S. P., Gao, Y. F., Li, J. F. Solar sail time-optimal interplanetary transfer trajectory design. Research in Astronomy and Astrophysics, 2011, 11(8): 981–996.

    Google Scholar 

  64. [64]

    Garg, D., Patterson, M. A., Francolin, C., Darby, C. L., Huntington, G. T., Hager, W. W., Rao, A. V. Direct trajectory optimization and costate estimation of finite-horizon and in finite-horizon optimal control problems using a Radau pseudospectral method. Computational Optimization and Applications, 2011, 49(2): 335–358.

    MathSciNet  MATH  Google Scholar 

  65. [65]

    Zhukov, A. N., Lebedev, V. N. Variational problem of transfer between heliocentric circular orbits by means of a solar sail. Cosmic Research, 1964, 2: 41–44.

    Google Scholar 

  66. [66]

    Sauer, C. G. Jr. Optimum solar-sail interplanetary trajectories. In: Proceedings of Astrodynamics Conference, 1976.

    Google Scholar 

  67. [67]

    Sauer, C. G. Jr. A comparison of solar sail and ion drive trajectories for a Halley’s comet rendezvous mission. AAS Paper 77-104, 1977.

    Google Scholar 

  68. [68]

    Colasurdo, G., Casalino, L. Optimal control law for interplanetary trajectories with nonideal solar sail. Journal of Spacecraft and Rockets, 2003, 40(2): 260–265.

    Google Scholar 

  69. [69]

    SubbaRao, P. V., Ramanan, R. V. Optimal threedimensional heliocentric solar-sail rendezvous transfer trajectories. Acta Astronautica, 1993, 29(5): 341–345.

    Google Scholar 

  70. [70]

    Quarta, A. A., Mengal, G. Solar sail missions to mercury with Venus gravity assist. Acta Astronautica, 2009, 65(3–4): 495–506.

    Google Scholar 

  71. [71]

    Otten, M., McInnes, C. R. Near minimum-time trajectories for solar sails. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 632–634.

    Google Scholar 

  72. [72]

    Mengali, G., Quarta, A. A. Solar sail trajectories with piecewise-constant steering laws. Aerospace Science and Technology, 2009, 13(8): 431–441.

    Google Scholar 

  73. [73]

    Macdonald, M., McInnes, C. R., Dachwald, B. Heliocentric solar sail orbit transfers with locally optimal control laws. Journal of Spacecraft and Rockets, 2007, 44(1): 273–276.

    Google Scholar 

  74. [74]

    Hokamoto, S., Sachimoto, K., Fujita, K. Trajectory design of solar sail spacecraft for interplanetary rendezvous missions. Transactions of Space Technology Japan, 2009, 7(26): 37–42.

    Google Scholar 

  75. [75]

    NASA Office of Space Science. Sun-earth connection roadmap: Strategic planning for the years 2000–2020. NASA, 1997.

    Google Scholar 

  76. [76]

    Macdonald, M., Hughes, G. W., McInnes, C. R., Lyngvi, A., Falkner, P., Atzei, A. Solar polar orbiter: A solar sail technology reference study. Journal of Spacecraft and Rockets, 2006, 43(5): 960–972.

    Google Scholar 

  77. [77]

    Goldstein, B. E., Buffington, A., Cummings, A. C., Fisher, R. R., Jackson, B. V., Liewer, P. C., Mewaldt, R. A., Neugebauer, M. Solar polar sail mission: Report of a study to put a scientific spacecraft in a circular polar orbit about the Sun. In: Proceedings of the SPIE 3442, International Symposium on Optical Science, Engineering, and Instrumentation, 1998.

    Google Scholar 

  78. [78]

    Sauer, C. G. Jr. Solar sail trajectories for solar-polar and interstellar probe missions. In: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, 1999.

    Google Scholar 

  79. [79]

    Dachwald, B., Ohndorf, A., Wie, B. Solar sail trajectory optimization for the Solar Polar Imager (SPI) Mission. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006.

    Google Scholar 

  80. [80]

    Mengali, G., Quarta, A. A. Solar sail near-optimal circular transfers with plane change. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 456–463.

    Google Scholar 

  81. [81]

    Macdonald, M. Analytical, circle-to-circle low-thrust transfer trajectories with plane change. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.

    Google Scholar 

  82. [82]

    Driver, J. M. Analysis of an arctic polesitter. Journal of Spacecraft and Rockets, 1980, 17(3): 263–269.

    Google Scholar 

  83. [83]

    McInnes, C. R., Simmons, J. F. L. Solar sail halo orbits part II-geocentric case. Journal of Spacecraft and Rockets, 1992, 29(4): 472–479.

    Google Scholar 

  84. [84]

    Hughes, G. W., McInnes, C. R. Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. Journal of Guidance, Control, and Dynamics, 2002, 25(3): 602–604.

    Google Scholar 

  85. [85]

    Ceriotti, M., Heiligers, J., McInnes. C. R. Trajectory and spacecraft design for a pole-sitter mission. Journal of Spacecraft and Rockets, 2014, 51(1): 311–326.

    Google Scholar 

  86. [86]

    Heiligers, J., Ceriotti, M., McInnes. C. R., Biggs, J. D. Mission analysis and systems design of a near-term and far-term pole-sitter mission. Acta Astronautica, 2014, 94(1): 455–469.

    Google Scholar 

  87. [87]

    West, J. The Geostorm Warning Mission: enhanced opportunities based on new technology. In: Proceedings of the 14th AAS/AIAA Space Flight Mechanics Conference, 2004.

    Google Scholar 

  88. [88]

    McInnes, C. Solar sailing: Technology, dynamics and mission applications, Springer, 1999.

    Google Scholar 

  89. [89]

    Lisano, M., Lawrence, D., Piggott, S. Solar sail transfer trajectory design and stationkeeping control for missions to the Sub-L1 equilibrium region. In: Proceedings of the 15th AAS/AIAA Spaceflight Mechanics Conference, 2005.

    Google Scholar 

  90. [90]

    Koon, W. S., Lo, M. W., Marsden, J. E., Ross, S. D. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos, 2000, 10(2): 427–469.

    MathSciNet  MATH  Google Scholar 

  91. [91]

    Biggs, J. D., Waters, T., McInnes, C. New periodic orbits in the solar sail three-body problem. Nonlinear Science and Complexity, 2011.

    Google Scholar 

  92. [92]

    Gong, S. P., Baoyin, H. X., Li, J. F. Solar sail three-body transfer trajectory design. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 873–886.

    Google Scholar 

  93. [93]

    Gong, S. P., Li, J. F., Baoyin, H. X. Solar sail transfer trajectory from L1 point to sub-L1 point. Aerospace Science and Technology, 2011, 15(7): 544–554.

    Google Scholar 

  94. [94]

    Wallace, R. A. Precursor missions to interstellar exploration. In: Proceedings of the 1999 IEEE Aerospace Conference, 1999.

    Google Scholar 

  95. [95]

    Johnson, L., Leifer, S. Propulsion options for interstellar exploration. In: Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000.

    Google Scholar 

  96. [96]

    Wallace, R. A., Ayon, J. A., Sprague, G. A. Interstellar probe mission/system concept. In: Proceedings of 2000 IEEE Aerospace Conference, 2000.

    Google Scholar 

  97. [97]

    Nieto, M. M., Turyshev, S. G. Measuring the interplanetary medium with a solar sail. International Journal of Modern Physics D, 2004, 13(5): 899–906.

    Google Scholar 

  98. [98]

    Garner, C. E., Layman, W., Gavit, S. A., Knowles, T. A solar sail design for a mission to the near-interstellar medium. AIP Conference Proceedings, 2000, 504: 947–961.

    Google Scholar 

  99. [99]

    Dachwald, B. Optimal solar-sail trajectories for missions to the outer solar system. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1187–1193.

    Google Scholar 

  100. [100]

    Lyngvi, A., Falkner, P., Peacock, A. The interstellar heliopause probe, Tools and Technologies for Future Planetary Exploration. In: Proceedings of the 37th ESLAB Symposium, 2004.

    Google Scholar 

  101. [101]

    Lyngvi, A., Falkner, P., Kemble, S., Leipold, M., Peacock, A. The interstellar heliopause probe. Acta Astronautica, 2005, 57(2–8): 104–111.

    Google Scholar 

  102. [102]

    Lyngvi, A., Falkner, P., Peacock, A. The interstellar heliopause probe technology reference study. Advances in Space Research, 2005, 35(12): 2073–2077.

    Google Scholar 

  103. [103]

    Leipold, M., Fichtner, H., Heber, B., Groepper, P., Lascar, S., Burger, F., Eiden, M., Niederstadt, T., Sickinger, C., Herbeck, L. et al. Heliopause explorer—a sailcraft mission to the outer boundaries of the solar system. Acta Astronautica, 2006, 59(8–11): 785–796.

    Google Scholar 

  104. [104]

    Macdonald, M., McInnes, C., Hughes, G. Technology requirements of exploration beyond Neptune by solar sail propulsion. Journal of Spacecraft and Rockets, 2010, 47(3): 472–483.

    Google Scholar 

  105. [105]

    Sharma, D. N., Scheeres, D. J. Solar system escape trajectories using solar sails. Journal of Spacecraft and Rockets, 2004, 41(4): 684–687.

    Google Scholar 

  106. [106]

    Dachwald, B., Seboldt, W., Macdonald, M., Mengali, G., Quarta, A. A., McInnes, C. R., Rios-Reyes, L., Scheeres, D. J., Wie, B., Görlich, M. et al. Potential solar sail degradation effects on trajectory and attitude control. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.

    Google Scholar 

  107. [107]

    Sznajder, M., Geppert, U., Dudek, M. Degradation of metallic surfaces under space conditions, with particular emphasis on Hydrogen recombination processes. Advances in Space Research, 2015, 56(1): 71–84.

    Google Scholar 

  108. [108]

    He, J., Gong, S. P., Jiang, F. H., Li, J. F. Time-optimal rendezvous transfer trajectory for restricted cone-angle range solar sails. Acta Mechanica Sinica, 2014, 30(5): 628–635.

    MathSciNet  MATH  Google Scholar 

  109. [109]

    McKay, R. J., Macdonald, M., Biggs, J., McInnes, C. Survey of highly non-Keplerian orbits with low-thrust propulsion. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 645–666.

    Google Scholar 

  110. [110]

    Leipold, M., Borg, E., Lingner, S., Pabsch, A., Sachs, R., Seboldt, W. Mercury orbiter with a solar sail spacecraft. Acta Astronautica, 1995, 35(S1): 635–644.

    Google Scholar 

  111. [111]

    McInnes, C. R., Macdonald, M., Angelopolous, V., Alexander, D. GEOSAIL: Exploring the geomagnetic tail using a small solar sail. Journal of Spacecraft and Rockets, 2001, 38(4): 622–629.

    Google Scholar 

  112. [112]

    Macdonald, M., Hughes, G. W., McInnes, C., Lyngvi, A., Falkner, P., Atzei, A. GeoSail: An elegant solar sail demonstration mission. Journal of Spacecraft and Rockets, 2007, 44(4): 784–796.

    Google Scholar 

  113. [113]

    Gong, S. P., Li, J. F., Baoyin, H. X., Simo, J. A new solar sail orbit. Science China Technological Sciences, 2012, 55(3): 848–855.

    Google Scholar 

  114. [114]

    Tresaco, E., Elipe, A., Carvalho, J. P. S. Frozen orbits for a solar sail around Mercury. Journal of Guidance, Control, and Dynamics, 2016, 39(7): 1659–1666.

    Google Scholar 

  115. [115]

    Baoyin, H. X., McInnes, C. R. Solar sail equilibria in the elliptical restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 538–543.

    Google Scholar 

  116. [116]

    Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J. On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Advances in Space Research, 2011, 48(11): 1740–1746.

    Google Scholar 

  117. [117]

    Gong, S. P., Li, J. F. Solar sail halo orbit control using reflectivity control devices. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(5): 279–288.

    Google Scholar 

  118. [118]

    Mu, J. S., Gong, S. P., Li, J. F. Reflectivity-controlled solar sail formation flying for magnetosphere mission. Aerospace Science and Technology, 2013, 30(1): 339–348.

    Google Scholar 

  119. [119]

    Mu, J. S., Gong, S. P., Li, J. F. Coupled control of reflectivity modulated solar sail for GeoSail formation flying. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 740–751.

    Google Scholar 

  120. [120]

    Gong, S. P., Li, J. F. Solar sail heliocentric elliptic displaced orbits. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 2021–2026.

    Google Scholar 

  121. [121]

    Aliasi, G., Mengali, G., Quarta, A. A. Artificial Lagrange points for solar sail with electrochromic material panels. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1544–1550.

    Google Scholar 

  122. [122]

    Gong, S. P., Li, J. F. Equilibria near asteroids for solar sails with refl ection control devices. Astrophysics and Space Science, 2015, 355(2): 213–223.

    Google Scholar 

  123. [123]

    Baoyin, H. X., Mcinnes, C. R. Solar sail halo orbits at the Sun-Earth artificial L1 point. Celestial Mechanics and Dynamical Astronomy, 2006, 94(2): 155–171.

    MathSciNet  MATH  Google Scholar 

  124. [124]

    Biggs, J. D., McInnes, C. R., Waters, T. Control of solar sail periodic orbits in the elliptic three-body problem. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 318–320.

    MATH  Google Scholar 

  125. [125]

    Gong, S. P., Li, J. F. Solar sail periodic orbits in the elliptic restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2015, 121(2): 121–137.

    MathSciNet  MATH  Google Scholar 

  126. [126]

    Vulpetti, G. Missions to the heliopause and beyond by staged propulsion spacecrafts. In: Proceedings of the 43rd World Space Congress, 1992.

    Google Scholar 

  127. [127]

    Vulpetti, G. 3D high-speed escape heliocentric trajectories by all-metallic-sail low-mass sailcraft. Acta Astronautica, 1996, 39(1–4): 161–170.

    Google Scholar 

  128. [128]

    Vulpetti, G. Sailcraft at high speed by orbital angular momentum reversal. Acta Astronautica, 1997, 40(10): 733–758.

    Google Scholar 

  129. [129]

    Sauer, C. Solar sail trajectories for solar polar and interstellar probe missions. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 1999.

    Google Scholar 

  130. [130]

    Zeng, X. Y., Baoyin, H. X., Li, J. F., Gong, S. P. Feasibility analysis of the angular momentum reversal trajectory via hodograph method for high performance solar sails. Science China Technological Sciences, 2011, 54(11): 2951–2957.

    Google Scholar 

  131. [131]

    Mengali, G., Quarta, A. A., Romagnoli, D., Circi, C. H2-reversal trajectory: A new mission application for high-performance solar sails. Advances in Space Research, 2011, 48(11): 1763–1777.

    Google Scholar 

  132. [132]

    Zeng, X. Y., Baoyin, H. X., Li, J. F., Gong, S. P. New applications of the H-reversal trajectory using solar sails. Research in Astronomy and Astrophysics, 2011, 11(7): 863–878.

    Google Scholar 

  133. [133]

    Gong, S. P., Li, J. F., Zeng, X. Y. Utilization of an H-reversal trajectory of a solar sail for asteroid deflection. Research in Astronomy and Astrophysics, 2011, 11(10): 1123–1133.

    Google Scholar 

  134. [134]

    Šuvakov, M., Dmitrašinović, V. Three classes of Newtonian three-body planar periodic orbits. Physical Review Letters, 2013, 110(11): 114301.

    Google Scholar 

  135. [135]

    Hamilton, D. P. Fresh solutions to the four-body problem. Nature, 2016, 533(7602): 187–188.

    Google Scholar 

  136. [136]

    Wie, B. Solar sail attitude control and dynamics, Part 1. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 526–535.

    MathSciNet  Google Scholar 

  137. [137]

    Wie, B. Solar sail attitude control and dynamics, Part 2. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 536–544.

    MathSciNet  Google Scholar 

  138. [138]

    Steyn, W. H. Attitude control actuators, sensors and algorithms for a solar sail Cubesat. In: Proceedings of the 62nd International Astronautical Congress, 2011.

    Google Scholar 

  139. [139]

    Jordaan, H. W., Steyn, W. H. The attitude control of a tri-spin solar sail satellite. Advances in Solar Sailing, 2014, 755–769.

    Google Scholar 

  140. [140]

    Polites, M., Kalmanson, J., Mangus, D. Solar sail attitude control using small reaction wheels and magnetic torquers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(1): 53–62.

    Google Scholar 

  141. [141]

    Wie, B., Murphy, D., Paluszek, M., Thomas, S. Robust attitude control systems design for solar sails, Part 2: MicroPPT-based secondary ACS. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.

    Google Scholar 

  142. [142]

    Lawrence, D. A., Piggott, S. W. Integrated trajectory and attitude control for a four-vane solar sail. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.

    Google Scholar 

  143. [143]

    Mettler, E., Açıkme, A. B., Ploen, S. R. Attitude dynamics and control of solar sails with articulated vanes. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.

    Google Scholar 

  144. [144]

    Fu, B., Eke, F. O. An attitude control methodology for large solar sails. In: Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.

    Google Scholar 

  145. [145]

    Fu, B., Eke, F. O. A reorientation scheme for large solar sails. Advances in the Astronautical Sciences, 2014, 150: 623–638.

    Google Scholar 

  146. [146]

    Funase, R., Kanno, G., Tsuda, Y. Controllability of propellant-free attitude control system for spinning solar sail using thin-film reflectivity control devices considering arbitrary sail deformation. In: Proceedings of the 63rd International Astronautical Congress, 2012

  147. [147]

    Funase, R., Kanno, G., Tsuda, Y. Modeling and on-orbit performance evaluation of propellant-free attitude control system for spinning solar sail via optical parameter switching. In: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, 2012, 1737–1754.

  148. [148]

    Guerrant, D. V., Wilkie, W. K., Lawrence, D. A. Heliogyro blade twist control via reflectivity modulation. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012.

    Google Scholar 

  149. [149]

    Borggräfe, A., Heiligers, J., Ceriotti, M., McInnes, C.R. Optical control of solar sails using distributed reflectivity. In: Proceedings of the Spacecraft Structures Conference, 2014.

    Google Scholar 

  150. [150]

    Benjamin, L. D. Attitude control and dynamics of solar sails. Master Dissertation, University of Washington, Washington, USA, 2001.

    Google Scholar 

  151. [151]

    Wie, B., Thomas, S., Paluszek, M., Murphy, D. Propellantless AOCS design for a 160-m, 450-kg sailcraft of the Solar Polar Imager Mission. In: Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005.

    Google Scholar 

  152. [152]

    Wie, B., Murphy, D. Solar-sail attitude control design for a sail fl ight validation mission. Journal of Spacecraft and Rockets, 2007, 44(4): 809–821.

    Google Scholar 

  153. [153]

    Bolle, A., Circi, C. Solar sail attitude control through in-plane moving masses. Journal of Aerospace Engineering, 2008, 222(1): 81–94.

    Google Scholar 

  154. [154]

    Scholz, C., Romagnoli, D., Dachwald, B. Performance analysis of an attitude control system for solar sails using sliding masses. In: Proceedings of the Second International Symposium on Solar Sailing, 2010.

    Google Scholar 

  155. [155]

    Romagnoli, D., Oehlschlagel, T. High performance two degrees of freedom attitude control for solar sails. Advances in Space Research, 2011, 48(11): 1869–1879.

    Google Scholar 

  156. [156]

    Seboldt, W., Dachwald, B. Solar sails for nearterm advanced scientific deep space missions. In: Proceedings of the 8th International Workshop on Combustion and Propulsion, 2002.

    Google Scholar 

  157. [157]

    Fu, B., Sperber, E., Eke, F. Solar sail technology—A state of the art review. Progress in Aerospace Sciences, 2016, 86: 1–19.

    Google Scholar 

  158. [158]

    Nasir, N. S., Theodorou, T., Lappas, V. J. Ground demonstration of a solar sail attitude control actuator. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2010.

    Google Scholar 

  159. [159]

    Adeli, S. N., Lappas, V. J., Wie, B. A scalable bus-based attitude control system for Solar Sails. Advances in Space Research, 2011, 48(11): 1836–1847.

    Google Scholar 

  160. [160]

    Steyn, W. H., Lappas, V. Cubesat solar sail 3-axis stabilization using panel translation and magnetic torquing. Aerospace Science and Technology, 2011, 15(6): 476–485.

    Google Scholar 

  161. [161]

    Acord, J. D., Nicklas, J. C. Theoretical and practical aspects of solar pressure attitude control for interplanetary spacecraft. Guidance and Control, 1964, 73–91.

    Google Scholar 

  162. [162]

    Polyakhova, E. Space flight using a solar sail—the problems and the prospects. Kosmicheskiy Polet Solnechnym Parusom, Moscow, 1986.

    Google Scholar 

  163. [163]

    Kirpichnikov, S. N., Kirpichnikova, E. S., Polyakhova, E. N., Shmyrov, A. S. Planar heliocentric rototranslatory motion of a spacecraft with a solar sail of complex shape. Celestial Mechanics and Dynamical Astronomy, 1995, 63(3–4): 255–269.

    MATH  Google Scholar 

  164. [164]

    van de Kolk, C. B., Flandro, G. A. Solar sail passive attitude stability and control. AIP Conference Proceedings, 2001, 552: 373–378.

    Google Scholar 

  165. [165]

    Atchison, J. A., Peck, M. A. A passive, sun-pointing, millimeter-scale solar sail. Acta Astronautica, 2010, 67(1–2): 108–121.

    Google Scholar 

  166. [166]

    McInnes, C. R. Passive control of displaced solar sail orbits. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 975–982.

    Google Scholar 

  167. [167]

    Gong, S. P., Li, J. F., Baoyin, H. X. Passive stability design for solar sail on displaced orbits. Journal of Spacecraft and Rockets, 2007, 44(5): 1071–1080.

    Google Scholar 

  168. [168]

    Gong, S. P., Li, J. F., Zhu, K. J. Dynamical analysis of a spinning solar sail. Advances in Space Research, 2011, 48(11): 1797–1809.

    Google Scholar 

  169. [169]

    Gong, S. P., Li J. F. Spin-stabilized solar sail for displaced solar orbits. Aerospace Science and Technology, 2014, 32(1): 188–199.

    Google Scholar 

  170. [170]

    Kreissl, S., Sakamoto, H., Park, K. C., Baier, H. Design improvements of a solar sail for stiffness increase and passive attitude stabilization. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.

    Google Scholar 

  171. [171]

    Hu, X. S., Gong, S. P., Li, J. F. Attitude stability criteria of axisymmetric solar sail. Advances in Space Research, 2014, 54(1): 72–81.

    Google Scholar 

  172. [172]

    Gong, S. P., Li, J. F. A new inclination cranking method for a exible spinning solar sail. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2680–2696.

    Google Scholar 

  173. [173]

    Choi, M. Flexible dynamics and attitude control of a square solar sail. Ph.D. Dissertation, University of Toronto, Toronto, Canada, 2015.

    Google Scholar 

  174. [174]

    Wilkie, W. K., Warren, J. E., Horta, L. G., Lyle, K. H., Juang, J. N., Gibbs, S. C., Dowell, E. H., Guerrant, D. V., Lawrence, D. A. Recent advances in heliogyro solar sail structural dynamics, stability, and control research. In: Proceedings of the 2nd AIAA Spacecraft Structures Conference, 2015.

    Google Scholar 

  175. [175]

    Fedor, J. V. Analytical theory of the stretch Yo-Yo for de-spin of satellites. NASA TN D-1676, National Aeronautics and Space Administration, 1963.

    Google Scholar 

  176. [176]

    Collins, R. L. A three-dimensional analysis of a tangential Yo-Yo despin device on a rotating body. NASA TN D-3848, National Aeronautics and Space Administration, 1967.

    Google Scholar 

  177. [177]

    Gärdsback, M. Deployment control of spinning space webs and membranes. SE-100 44, Royal Institute of Technology, 2008.

    Google Scholar 

  178. [178]

    Gärdsback, M., Tibert, G. Deployment control of spinning space Webs. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 40–50.

    Google Scholar 

  179. [179]

    Gärdsback, M., Tibert, G. Optimal deployment control of spinning space webs and membranes. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1519–1530.

    Google Scholar 

  180. [180]

    Haraguchi, D., Sakamoto, H., Shirasawa, Y., Mori, O. Design criteria for spin deployment of gossamer structures considering nutation dynamics. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2010.

    Google Scholar 

  181. [181]

    Wei, Y. H., Zhu, M., Peng, C., Wang, Y. Dynamical analysis of the deployment for a reduced spinning solar sail model. Advances in Solar Sailing, 2014.

    Google Scholar 

  182. [182]

    Nakano, T., Mori, O., Kawaguchi, J. Stability of spinning solar sail-craft containing a huge membrane. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.

    Google Scholar 

  183. [183]

    Funase, R., Sugita, M., Mori, O., Tsuda, Y., Kawaguchi, J. Modeling of spinning solar sail by multi particle model and its application to attitude control system. In: Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, 983–994.

    Google Scholar 

  184. [184]

    Funase, R., Sugita, M., Miwa, Y., Mori, O., Kawaguchi, J. Oscillation-free attitude control of spinning solar sail with huge membrane. In: Proceedings of the 27th International Symposium on Space Technology and Science, 2009

  185. [185]

    Okuizumi, N. Deformations and vibrations of a rotating circular membrane under distributed loads. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.

    Google Scholar 

  186. [186]

    Okuizumi, N. Equilibrium of a rotating circular membrane under transverse distributed load. Journal of System Design and Dynamics, 2007, 1(1): 85–96.

    Google Scholar 

  187. [187]

    Okuizumi, N. Vibration mode analysis of a rotating circular membrane under transverse distributed load. Journal of System Design and Dynamics, 2009, 3(1): 95–106.

    Google Scholar 

  188. [188]

    Cerda, E., Mahadevan, L. Geometry and physics of wrinkling. Physical Review Letters, 2003, 90(7): 074302.

    Google Scholar 

  189. [189]

    Mori, O., Shirasawa, Y., Tsuda, Y., et al. Dynamic deployment and attitude control motion of spinning solar sail “IKAROS”. In: Proceedings of the 62nd International Astranautical Congress, 2011

  190. [190]

    Sugita, M., Funase, R., Tsuda, Y., et al. Attitude control of spinning solar sail considering the deformation by solar radiation pressure. In: Proceedings of the 59th International Astranautical Congress, 2008.

  191. [191]

    Baddour, N. A modelling and vibration analysis of spinning disks. Ph.D. Dissertation, University of Toronto, Toronto, Canada, 2001.

    Google Scholar 

  192. [192]

    Zhang, W., Yang, X. L. Transverse nonlinear vibrations of a circular spinning disk with a varying rotating speed. Science China Physics, Mechanics and Astronomy, 2010, 53(8): 1536–1553.

    Google Scholar 

  193. [193]

    Tsuda, Y., Saiki, T., Funase, R., Mimasu, Y. Generalized attitude model for spinning solar sail spacecraft. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 967–974.

    Google Scholar 

  194. [194]

    Tsuda, Y., Saiki, T., Funase, R., Shirasawa, Y., Mimasu, Y. Shape parameters estimation of IKAROS solar sail using in-flight attitude determination data. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.

    Google Scholar 

  195. [195]

    Tsuda, Y., Okano, Y., Mimasu, Y., Funase, R. Onorbit sail quality evaluation utilizing attitude dynamics of spinner solar sailer ikaros, Spaceflight Mechanics, 2012, 143: 1609–1625.

    Google Scholar 

  196. [196]

    Tsuda, Y., Mimasu, Y., Funase, R., Okano, Y. Design criteria of spinning solar sail surface based on attitude dynamics. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, 2012.

    Google Scholar 

  197. [197]

    Smith, S. W., Song, H. P., Baker, J. R., Black, J., Muheim, D. M. Flexible models for solar sail control. In: Proceedings of the 46th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.

    Google Scholar 

  198. [198]

    Fu, B., Farouki, R. T., Fidelis, O., Eke, O. Equilibrium configuration of a bounded inextensible membrane subject to solar radiation pressure. Aerospace Science and Technology, 2017, 68: 552–560.

    Google Scholar 

  199. [199]

    Mansfield, E. H., Pugsley, A. G. Load Transfer via a wrinkled membrane. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 316(1525): 269–289.

    Google Scholar 

  200. [200]

    Miller, R. K., Hedgepeth, J. M., Weingarten, V. I., Das, P., Kahyai, S. Finite element analysis of partly wrinkled membranes. Computers & Structures, 1985, 20(1–3): 631–639.

    Google Scholar 

  201. [201]

    Liu, X. X., Jenkins, C. H., Schur, W. W. Large deflection analysis of pneumatic envelopes using a penalty parameter modified material model. Finite Elements in Analysis and Design, 2001, 37(3): 233–251.

    MATH  Google Scholar 

  202. [202]

    Moriya, K., Uemura, M. An analysis of the tension field after wrinkling in at membrane structures. In: Proceedingsof the IASS Pacific Symposium, 1971.

    Google Scholar 

  203. [203]

    Fujikake, M., Kojima, O., Fukushima, S. Analysis of fabric tension structures. Computers & Structures, 1989, 32(3–4): 537–547.

    MATH  Google Scholar 

  204. [204]

    Miyazaki, Y., Nakamura, Y. Dynamic analysis of deployable cable-membrane structures with slackening members. In: Proceedings of the 21st International Symposium on Space Technology and Science, 1998.

    Google Scholar 

  205. [205]

    Roddeman, D. G., Drukker, J., Oomens, C. W. J., Janssen, J. D. The wrinkling of thin membranes: Part I—theory. Journal of Applied Mechanics, 1987, 54(4): 884–887.

    MATH  Google Scholar 

  206. [206]

    Roddeman, D. G., Drukker, J., Oomens, C. W. J., Janssen, J. D. The wrinkling of thin membranes: Part II—numerical analysis. Journal of Applied Mechanics, 1987, 54(4): 888–892.

    MATH  Google Scholar 

  207. [207]

    Miyazaki, Y., Uchiki, M. Deployment dynamics of inflatable tube. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.

    Google Scholar 

  208. [208]

    Sleight, D. W., Muheim, D. M. Parametric studies of square solar sails using finite element analysis. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.

    Google Scholar 

  209. [209]

    Sleight, D. W., Michii, Y., Lichodziejewski, D., Derbès, B., Mann, T., O. Structural analysis of an inflation-deployed solar sail with experimental validation. In: Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005.

    Google Scholar 

  210. [210]

    Miyamura, T. Wrinkling on stretched circular membrane under in-plane torsion: Bifurcation analyses and experiments. Engineering Structures, 2000, 22(11): 1407–1425.

    Google Scholar 

  211. [211]

    Wong, Y. W. Analysis of wrinkle patterns in prestressed membrane structures. Master Dissertation, University of Cambridge, Cambridge, UK, 2000.

    Google Scholar 

  212. [212]

    Papa, A., Pellegrino, S. Systematically creased thin-film membrane structures. Journal of Spacecraft and Rockets, 2008, 45(1): 10–18.

    Google Scholar 

  213. [213]

    Pipkin, A. C. Relaxed energy densities for large deformations of membranes. IMA Journal of Applied Mathematics, 1994, 52(3): 297–308.

    MathSciNet  MATH  Google Scholar 

  214. [214]

    Wong, Y., W., Pellegrino, S. Computation of wrinkle amplitudes in thin membranes. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.

    Google Scholar 

  215. [215]

    Ding, H., Yang, B., Lou, M., Fang, H. A two-viable parameter membrane model for wrinkling analysis of membrane structures. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.

    Google Scholar 

  216. [216]

    Ding, H. L., Yang, B. G., Lou, M., Fang, H. F. New numerical method for two-dimensional partially wrinkled membranes. AIAA Journal, 2003, 41(1): 125–132.

    Google Scholar 

  217. [217]

    Murphy, D. M., Murphey, T. W., Gierow, P. A. Scalable solar sail subsystem design considerations. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.

    Google Scholar 

  218. [218]

    Taleghani, B. K., Sleight, D. W., Muheim, D. M., Belvin, B., Wang, J. T. Assessment of analysis approaches for solar sail structural response. In: Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.

    Google Scholar 

  219. [219]

    Holland, D. B. Static and dynamic characteristics of end-loaded beams with specific application in square solar sails. Ph.D. Dissertation, Duke University, Durham, UK, 2006.

    Google Scholar 

  220. [220]

    Lee, K., Lee, S. W. Analysis of gossamer space structures using assumed strain formulation solid shell elements. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.

    Google Scholar 

  221. [221]

    Miyazaki, Y. Wrinkle/slack model and finite element dynamics of membrane. International Journal for Numerical Methods in Engineering, 2006, 66(7): 1179–1209.

    MATH  Google Scholar 

  222. [222]

    Liu, C., Tian, Q., Yan, D., Hu, H. Y. Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Computer Methods in Applied Mechanics and Engineering, 2013, 258: 81–95.

    MathSciNet  MATH  Google Scholar 

  223. [223]

    Miyazaki, Y., Kodama, T. Formulation and interpretation of the equation of motion on the basis of the energy-momentum method. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2004, 218(1): 1–7.

    Google Scholar 

  224. [224]

    Liao, L. A study of inertia relief analysis. In: Proceedings of the 2nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.

    Google Scholar 

  225. [225]

    Boni, L., Mengali, G., Quarta, A. A. Solar sail structural analysis via improved finite element modeling. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(2): 306–318.

    Google Scholar 

  226. [226]

    Potes, F. C. General conceptual design problems of a parabolic solar sail structure. Universidade da Beira Interior, 2012.

    Google Scholar 

  227. [227]

    Choi, M., Damaren, C. J. Structural dynamics and attitude control of a solar sail using tip vanes. Journal of Spacecraft and Rockets, 2015, 52(6): 1665–1679.

    Google Scholar 

  228. [228]

    Yamazaki, M., Miyazaki, Y. Low-order model of spin type solar sail dynamics by empirical model reduction. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.

    Google Scholar 

  229. [229]

    Yamazaki, M., Miyazaki, Y. Error estimation of low-order model for gossamer multi-body structure. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference, 2011.

    Google Scholar 

  230. [230]

    Chen, S. H., Pan, H. H. Guyan reduction. International Journal for Numerical Methods in Biomedical Engineering, 1988, 4(4): 549–556.

    MathSciNet  MATH  Google Scholar 

  231. [231]

    Li, Q., Ma, X. R., Wang, T. S. Reduced model for flexible solar sail dynamics. Journal of Spacecraft and Rockets, 2011, 48(3): 446–453.

    Google Scholar 

  232. [232]

    Miyazaki, Y., Iwai, Y. Dynamics model of solar sail membrane. In: Proceedings of the 14th Workshop on Astrodynamics and Flight Mechanics, 2004.

    Google Scholar 

  233. [233]

    Okuizumi, N. Numerical simulations of centrifugal deployments of membranes by spring-mass system models. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010.

    Google Scholar 

  234. [234]

    Okuizumi, N., Yamamoto, T. Centrifugal deployment of membrane with spiral folding: Experiment and simulation. Journal of Space Engineering, 2009, 2(1): 41–50.

    Google Scholar 

  235. [235]

    Shirasawa, Y., Mori, O., Miyazaki, Y., Sakamoto, H., Hasome, M., Okuizumi, N., Sawada, H., Furuya, H., Matsunaga, S., Natori, N. et al. Analysis of membrane dynamics using multi-particle model for solar sail demonstrator “IKAROS”. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.

    Google Scholar 

  236. [236]

    Shirasawa, Y., Mori, O., Sawada, H., Chishiki, Y., Kitamura, K., Kawaguchi, J. A study on membrane dynamics and deformation of solar power sail demonstrator “IKAROS”. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012.

    Google Scholar 

  237. [237]

    Johnson, M., McCann, J., Santer, M., Baoyin, H., Gong, S. P. On orbit validation of solar sailing control laws with thin-film spacecraft. In: Proceedings of the 4th International Symposium on Solar Sailing, 2017.

    Google Scholar 

  238. [238]

    Janson, S., Brane craft. NIAC 2016 phase 1 Janson Brane Craft final report. Available at: https://doi.org/www.nasa.gov/sites/default/files/atoms/files/niac_2016_phasei_janson_braneconcept_tagged.pdf.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 117722167 and 11822205).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shengping Gong.

Additional information

Shengping Gong received his Ph.D. degree in mechanical engineering from Tsinghua University, China, in 2008. He is an associate professor at School of Aerospace Engineering, Tsinghua University. His research interests cover the solar sailing, dynamics of many-body system, and manned space flight.

Malcolm Macdonald is a professor of mechanical and aerospace engineering at University of Strathclyde, Glasgow. He is the director of the Scottish Centre of Excellence in Satellite Applications, and a non-executive board member of the UK Space Agency. He was awarded the 2016 Royal Society of Edinburgh Sir Thomas Makdougall Brisbane Medal. He was the only non-US member of a National Academies of Sciences, Engineering, and Medicine’s committee on “Achieving Science Goals with CubeSats”, and one of only two European associate editors of the Journal of Guidance, Control, and Dynamics. His research interests are in the use of advanced concepts, such as solar sailing, and multi-spacecraft platforms, to enable new space services through the application of concepts from networked systems and swarm engineering, combined with astrodynamics and space system design.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Macdonald, M. Review on solar sail technology. Astrodyn 3, 93–125 (2019). https://doi.org/10.1007/s42064-019-0038-x

Download citation

Keywords

  • solar sail
  • orbit
  • attitude
  • structure