Dust in the Jupiter system outside the rings

Abstract

Jupiter is one of the major targets for planetary exploration, and dust in the Jovian system is of great interest to researchers in the field of planetary science. In this paper, we review the five dust populations outside the ring system: grains in the region of the Galilean moons, potential dust from plumes on Europa, Jovian stream particles, particles in the outer region of the Jovian system ejected from the irregular satellites, and dust in the region of the Trojan asteroids. The physical environment for the dust dynamics is described, including the gravity, the magnetic field and the plasma environment. For each population, the dust sources are described, and the relevant perturbation forces are discussed. Observations and results from modeling are reviewed, and the distributions of the individual dust populations are shown. The understanding of the Jovian dust environment allows to assess the dust hazard to spacecraft, and to characterize the material exchange between the Jovian moons, their surface properties and distribution of non-icy constituents.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Humes, D. H., Alvarez, J. M., O’Neal, R. L., Kinard, W. H. The interplanetary and near-Jupiter meteoroid environments. Journal of Geophysical Research, 1974, 79(25): 3677–3684.

    Google Scholar 

  2. [2]

    Humes, D. H., Alvarez, J. M., Kinard, W. H., O’Neal, R. L. Pioneer 11 meteoroid detection experiment: preliminary results. Science, 1975, 188(4187): 473–474.

    Google Scholar 

  3. [3]

    Smith, B. A., Soderblom, L. A., Johnson, T. V., Ingersoll, A. P., Collins, S. A., Shoemaker, E. M., Hunt, G. E., Masursky, H., Carr, M. H., Davies, M. E. et al. The Jupiter system through the eyes of Voyager 1. Science, 1979, 204(4396): 951–792.

    Google Scholar 

  4. [4]

    Owen, T., Danielson, G. E., Cook, A. F., Hansen, C., Hall, V. L., Duxbury, T. C. Jupiter’s rings. Nature, 1979, 281(5731): 442–446.

    Google Scholar 

  5. [5]

    Zeehandelaar, D. B., Hamilton, D. P. A local source for the Pioneer 10 and 11 circumjovian dust detections. In: Proceedings of Dust in Planetary Systems. Kauai, Hawaii, USA, 2007, 103–106.

    Google Scholar 

  6. [6]

    Showalter, M. R., Burns, J. A., Cuzzi, J. N., Pollack, J. B. Discovery of Jupiter’s ‘gossamer’ ring. Nature, 1985, 316(6028): 526–528.

    Google Scholar 

  7. [7]

    Showalter, M. R., Burns, J. A., Cuzzi, J. N., Pollack, J. B. Jupiter’s ring system: new results on structure and particle properties. Icarus, 1987, 69(3): 458–498.

    Google Scholar 

  8. [8]

    Throop, H. B., Porco, C. C., West, R. A., Burns, J. A., Showalter, M. R., Nicholson, P. D. The Jovian rings: new results derived from Cassini, Galileo, Voyager, and Earth-based observations. Icarus, 2004, 172(1): 59–77.

    Google Scholar 

  9. [9]

    Showalter, M. R., de Pater, I., Verbanac, G., Hamilton, D. P., Burns, J. A. Properties and dynamics of Jupiter’s gossamer rings from Galileo, Voyager, Hubble and Keck images. Icarus, 2008, 195(1): 361–377.

    Google Scholar 

  10. [10]

    Ockert-Bell, M. E., Burns, J. A., Daubar, I. J., Thomas, P. C., Veverka, J., Belton, M. J. S., Klaasen, K. P. The structure of Jupiter’s ring system as revealed by the Galileo imaging experiment. Icarus, 1999, 138(2): 188–213.

    Google Scholar 

  11. [11]

    Burns, J. A., Showalter, M. R., Hamilton, D. P., Nicholson, P. D., de Pater, I., Ockert-Bell, M. E., Thomas, P. C. The formation of Jupiter’s faint rings. Science, 1999, 284(5417): 1146–1150.

    Google Scholar 

  12. [12]

    McMuldroch, S., Pilorz, S. H., Danielson, G. E., the NIMS Science Team. Galileo NIMS Near-infrared observations of Jupiter’s ring system. Icarus, 2000, 146(1): 1–11.

    Google Scholar 

  13. [13]

    Brooks, S. M., Esposito, L. W., Showalter, M. R., Throop, H. B. The size distribution of Jupiter’s main ring from Galileo imaging and spectroscopy. Icarus, 2004, 170(1): 35–57.

    Google Scholar 

  14. [14]

    Krüger, H., Grn, E., Hamilton, D. P., Baguhl, M., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horányi, M., Kissel, J. et al. Three years of Galileo dust data: II. 1993–1995. Planetary and Space Science, 1998, 47(1–2): 85–106.

    Google Scholar 

  15. [15]

    Krüger, H., Grün, E., Graps, A., Bindschadler, D., Dermott, S., Fechtig, H., Gustafson, B. A., Hamilton, D. P., Hanner, M. S., Horányi, M. et al. One year of Galileo dust data from the Jovian system: 1996. Planetary and Space Science, 2001, 49(3): 1285–1301.

    Google Scholar 

  16. [16]

    Krüger, H., Krivov, A. V., Sremčević, M., Grün, E. Impact-generated dust clouds surrounding the Galilean moons. Icarus, 2003, 164(1): 170–187.

    Google Scholar 

  17. [17]

    Krüger, H., Bindschadler, D., Dermott, S. F., Graps, A. L., Grün, E., Gustafson, B. A., Hamilton, D. P., Hanner, M. S., Horányi, M., Kissel, J. et al. Galileo dust data from the Jovian system: 1997–1999. Planetary and Space Science, 2006, 54(9–10): 879–910.

    Google Scholar 

  18. [18]

    Krüger, H., Hamilton, D. P., Moissl, R., Grün, E. Galileo in-situ dust measurements in Jupiter’s gossamer rings. Icarus, 2009, 203(1): 198–213.

    Google Scholar 

  19. [19]

    Krüger, H., Bindschadler, D., Dermott, S. F., Graps, A. L., Grün, E., Gustafson, B. A., Hamilton, D. P., Hanner, M. S., Horányi, M., Kissel, J. et al. Galileo dust data from the Jovian system: 2000 to 2003. Planetary and Space Science, 2010, 58(7–8): 965–993.

    Google Scholar 

  20. [20]

    Grün, E., Baguhl, M., Hamilton, D. P., Riemann, R., Zook, H. A., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horányi, M. et al. Constraints from Galileo observations on the origin of Jovian dust streams. Nature, 1996, 381(6581): 395–398.

    Google Scholar 

  21. [21]

    Thiessenhusen, K. U., Krüger, H., Spahn, F., Grün, E. Dust grains around Jupiter—the observations of the Galileo dust detector. Icarus, 2000, 144(1): 89–98.

    Google Scholar 

  22. [22]

    Krivov, A. V., Krüger, H., Grün, E., Thiessenhusen, K. U., Hamilton, D. P. A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites. Journal of Geophysical Research, 2002, 107(E1): 5002.

    Google Scholar 

  23. [23]

    Krivov, A. V., Wardinski, I., Spahn, F., Krüger, H., Grün, E. Dust on the outskirts of the Jovian system. Icarus, 2002, 157(2): 436–455.

    Google Scholar 

  24. [24]

    Porco, C. C., West, R. A., McEwen, A., del Genio, A. D., Ingersoll, A. P., Thomas, P., Squyres, S., Dones, L., Murray, C. D., Johnson, T. V. et al. Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 2003, 299(5612): 1541–1547.

    Google Scholar 

  25. [25]

    Brown, R. H., Baines, K. H., Bellucci, G., Bibring, J. P., Buratti, B. J., Capaccioni, F., Cerroni, P., Clark, R. N., Coradini, A., Cruikshank, D. P. et al. Observations with the visual and infrared mapping spectrometer (VIMS) during Cassini’s flyby of Jupiter. Icarus, 2003, 164(2): 461–470.

    Google Scholar 

  26. [26]

    Showalter, M. R., Cheng, A. F., Weaver, H. A., Stern, S. A., Spencer, J.R., Throop, H.B., Birath, E.M., Rose, D., Moore, J. M. Clump detections and limits on moons in Jupiter’s ring system. Science, 2007, 318(5848): 232–234.

    Google Scholar 

  27. [27]

    Poppe, A., James, D., Jacobsmeyer, B., Horányi, M. First results from the Venetia Burney student dust counter on the new horizons mission. Geophysical Research Letters, 2010, 37(11): L11101.

    Google Scholar 

  28. [28]

    Grün, E., Zook, H. A., Baguhl, M., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B. A., Linkert, D., Linkert, G., Mann, I. B. et al. Ulysses dust measurements near Jupiter. Science, 1992, 257(5076): 1550–1552.

    Google Scholar 

  29. [29]

    Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R., Manner, M. S., Horányi, M., Kissel, J. et al. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 1993, 362(6419): 428–430.

    Google Scholar 

  30. [30]

    Krüger, H., Graps, A. L., Hamilton, D. P., Flandes, A., Forsyth, R. J., Horányi, M., Grün, E. Ulysses Jovian latitude scan of high-velocity dust streams originating from the Jovian system. Planetary and Space Science, 2006, 54(9–10): 919–931.

    Google Scholar 

  31. [31]

    Meier, R., Smith, B. A., Owen, T. C., Becklin, E. E., Terrile, R. J. Near infrared photometry of the Jovian ring and Adrastea. Icarus, 1999, 141(2): 253–262.

    Google Scholar 

  32. [32]

    de Pater, I., Showalter, M. R., Burns, J. A., Nicholson, P. D., Liu, M. C., Hamilton, D. P., Graham, J. R. Keck infrared observations of Jupiter’s ring system near Earth’s 1997 ring plane crossing. Icarus, 1999, 138(2): 214–223.

    Google Scholar 

  33. [33]

    de Pater, I., Showalter, M. R., Macintosh, B. Keck observations of the 2002–2003 Jovian ring plane crossing. Icarus, 2008, 195(1): 348–360.

    Google Scholar 

  34. [34]

    Krüger, H., Krivov, A. V., Hamilton, D. P., Grün, E. Detection of an impact-generated dust cloud around Ganymede. Nature, 1999, 399(6736): 558–560.

    Google Scholar 

  35. [35]

    Colwell, J. E., Horányi, M., Grün, E. Capture of interplanetary and interstellar dust by the Jovian magnetosphere. Science, 1998, 280(5360): 88–91.

    Google Scholar 

  36. [36]

    Colwell, J. E., Horányi, M., Grün, E. Jupiter’s exogenic dust ring. Journal of Geophysical Research, 1998, 103(E9): 20023–20030.

    Google Scholar 

  37. [37]

    Quick, L. C., Barnouin, O. S., Prockter, L. M., Patterson, G. W. Constraints on the detection of cryovolcanic plumes on Europa. Planetary and Space Science, 2013, 86: 1–9.

    Google Scholar 

  38. [38]

    Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., Nimmo, F. Transient water vapor at Europa’s south pole. Science, 2014, 343(6167): 171–174.

    Google Scholar 

  39. [39]

    Roth, L., Retherford, K. D., Saur, J., Strobel, D. F., Feldman, P. D., McGrath, M. A., Nimmo, F. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. In: Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48): E5123–E5132.

    Google Scholar 

  40. [40]

    Southworth, B. S., Kempf, S., Schmidt, J. Modeling Europa’s dust plumes. Geophysical Research Letters, 2015, 42(24): 10541–10548.

    Google Scholar 

  41. [41]

    Sparks, W. B., Hand, K. P., McGrath, M. A., Bergeron, E., Cracraft, M., Deustua, S. E. Probing for evidence of plumes on Europa with HST/STIS. The Astrophysical Journal, 2016, 829(2): 121.

    Google Scholar 

  42. [42]

    Graps, A. L., Grün, E., Svedhem, H., Krüger, H., Horányi, M., Heck, A., Lammers, S. Io as a source of the Jovian dust streams. Nature, 2000, 405(6782): 48–50.

    Google Scholar 

  43. [43]

    Liu, X., Schmidt, J. Dust arcs in the region of Jupiter’s Trojan asteroids. Astronomy & Astrophysics, 2018, 609: A57.

    Google Scholar 

  44. [44]

    Zimmer, A. K., Grogan, K. Orbital evolution of dust particles originating from Jupiter’s Trojan asteroids. Advances in the Astronautical Sciences, 2014, 152: 3049–3060.

    Google Scholar 

  45. [45]

    de Elia, G. C., Brunini, A. Studying the Jovian Trojan dust. Astronomy and Astrophysics, 2010, 512: A65.

    Google Scholar 

  46. [46]

    de Pater, I., Hamilton, D. P., Showalter, M. R., Throop, H. B., Burns, J. A. The rings of Jupiter. Planetary Ring Systems, 2018: 125–134.

    Google Scholar 

  47. [47]

    Burns, J. A., Simonelli, D. P., Showalter, M. R., Hamilton, D. P., Porco, C. D., Throop, H., Esposito, L. W. Jupiter’s ring-moon system. Cambridge University Press, 2004, 241–262.

    Google Scholar 

  48. [48]

    Miner, E. D., Wessen, R. R., Cuzzi, J. N. Planetary ring systems. Praxis Publishing Ltd, 2007.

    Google Scholar 

  49. [49]

    Krüger, H., Horányi, M., Krivov, A. V., Graps, A. L. Jovian dust: streams, clouds and rings. Jupiter: The Planet, Satellites and Magnetosphere, 2004, 219–240.

    Google Scholar 

  50. [50]

    Plaut, J. J., Barabash, S., Bruzzone, L., Dougherty, M., Erd, C., Fletcher, L., Gladstone, R., Grasset, O., Gurvits, L., Hartogh, P. et al. Jupiter icy moons explorer (JUICE): science objectives, mission and instruments. In: Proceedings of the 45th Lunar and Planetary Science Conference, Texas, USA, 2014.

    Google Scholar 

  51. [51]

    Phillips, C. B., Pappalardo, R. T. Europa clipper mission concept: exploring Jupiter’s ocean moon. Eos, Transactions American Geophysical Union, 2014, 95(20): 165–167.

    Google Scholar 

  52. [52]

    Levison, H. F., Olkin, C., Noll, K. S., Marchi, S., Team, L. Lucy: surveying the diversity of the Trojan asteroids: the fossils of planet formation. In: Proceedings the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, 2017.

    Google Scholar 

  53. [53]

    Burns, J. A., Lamy, P. L., Soter, S. Radiation forces on small particles in the solar system. Icarus, 1979, 40(1): 1–48.

    Google Scholar 

  54. [54]

    Liu, X., Sachse, M., Spahn, F., Schmidt, J. Dynamics and distribution of Jovian dust ejected from the Galilean satellites. Journal of Geophysical Research, 2016, 121(7): 1141–1173.

    Google Scholar 

  55. [55]

    Draine, B. T., Salpeter, E. E. On the physics of dust grains in hot gas. The Astrophysical Journal, 1979, 231: 77–94.

    Google Scholar 

  56. [56]

    Banaszkiewicz, M., Fahr, H. J., Scherer, K. Evolution of dust particle orbits under the influence of solar wind outflow asymmetries and the formation of the zodiacal dust cloud. Icarus, 1994, 107(2): 358–374.

    Google Scholar 

  57. [57]

    Morfill, G. E., Grn, E., Johnson, T. V. Dust in Jupiter’s magnetosphere: physical processes. Planetary and Space Science, 1980, 28(12): 1087–1100.

    Google Scholar 

  58. [58]

    Dikarev, V. V. Dynamics of particles in Saturn’s E ring: effects of charge variations and the plasma drag force. Astronomy and Astrophysics, 1999, 346: 1011–1019.

    Google Scholar 

  59. [59]

    Northrop, T. G., Birmingham, T. J. Plasma drag on a dust grain due to Coulomb collisions. Planetary and Space Science, 1990, 38(3): 319–326.

    Google Scholar 

  60. [60]

    Connerney, J. E. P. Magnetic fields of the outer planets. Journal of Geophysical Research, 1993, 98(E10): 18659–18679.

    Google Scholar 

  61. [61]

    Dougherty, M. K., Balogh, A., Southwood, D. J., Smith, E. J. Ulysses assessment of the Jovian planetary field. Journal of Geophysical Research, 1996, 101(A11): 24929–24941.

    Google Scholar 

  62. [62]

    Connerney, J. E. P., Acu˜na, M. H., Ness, N. F., Satoh, T. New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 1998, 103(A6): 11929–11939.

    Google Scholar 

  63. [63]

    Randall, B. A. An improved magnetic field model for Jupiter’s inner magnetosphere using a Microsignature of Amalthea. Journal of Geophysical Research, 1998, 103(A8): 17535–17542.

    Google Scholar 

  64. [64]

    Connerney, J. E. P. Planetary magnetism. Treatise on Geophysics, 2007, 243–280.

    Google Scholar 

  65. [65]

    Hess, S. L. G., Bonfond, B., Zarka, P., Grodent, D. Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research, 2011, 116(A5): A05217.

    Google Scholar 

  66. [66]

    Schaffer, L., Burns, J. A. The dynamics of weakly charged dust: motion through Jupiter’s gravitational and magnetic fields. Journal of Geophysical Research, 1987, 92(A3): 2264–2280.

    Google Scholar 

  67. [67]

    Burns, J. A., Schaffer, L. E., Greenberg, R. J., Showalter, M. R. Lorentz resonances and the structure of the Jovian ring. Nature, 1985, 316(6024): 115–119.

    Google Scholar 

  68. [68]

    Divine, N., Garrett, H. B. Charged particle distributions in Jupiter’s magnetosphere. Journal of Geophysical Research, 1983, 88(A9): 6889–6903.

    Google Scholar 

  69. [69]

    Sittler, E. C. Jr., Strobel, D. F. Io plasma torus electrons: voyager 1. Journal of Geophysical Research, 1987, 92(A6): 5741–5762.

    Google Scholar 

  70. [70]

    Frank, L. A., Paterson, W. R. Galileo observations of electron beams and thermal ions in Jupiter’s magnetosphere and their relationship to the auroras. Journal of Geophysical Research, 2002, 107(A12): 1478.

    Google Scholar 

  71. [71]

    Bagenal, F., Delamere, P. A. Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 2011, 116(A5): A05209.

    Google Scholar 

  72. [72]

    Garrett, H. B., Kim, W., Belland, B., Evans, R. Jovian plasma modeling for mission design. Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA. 2015. https://doi.org/hdl.handle.net/2014/45478.

    Google Scholar 

  73. [73]

    Horányi, M. Charged dust dynamics in the solar system. Annual Review of Astronomy and Astrophysics, 1996, 34: 383–418.

    Google Scholar 

  74. [74]

    Dzhanoev, A. R., Schmidt, J., Liu, X., Spahn, F. Charging of small grains in a space plasma: application to Jovian stream particles. Astronomy & Astrophysics, 2016, 591: A147.

    Google Scholar 

  75. [75]

    Gustafson, B. Å. S. Physics of zodiacal dust. Annual Review of Earth and Planetary Sciences, 1994, 22: 553–595.

    Google Scholar 

  76. [76]

    Landgraf, M. Modeling the motion and distribution of interstellar dust inside the heliosphere. Journal of Geophysical Research, 2000, 105(A5): 10303–10316.

    Google Scholar 

  77. [77]

    Krüger, H., Grün, E. Dust en-route to Jupiter and the Galilean satellites. COSPAR Colloquia Series, 2002, 15: 144–159.

    Google Scholar 

  78. [78]

    Krüger, H., Krivov, A. V., Grün, E. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planetary and Space Science, 2000, 48(15): 1457–1471.

    Google Scholar 

  79. [79]

    Horányi, M., Szalay, J. R., Kempf, S., Schmidt, J., Grün, E., Srama, R., Sternovsky, Z. A permanent, asymmetric dust cloud around the Moon. Nature, 2015, 522(7556): 324–326.

    Google Scholar 

  80. [80]

    Soja, R. H., Hamilton, D. P., Altobelli, N. A new analysis of Galileo dust data near Jupiter. Planetary and Space Science, 2015, 109–110: 76–91.

    Google Scholar 

  81. [81]

    Bottke, W. F., Vokrouhlický, D., Nesvorný, D., Moore, J. M. Black rain: the burial of the Galilean satellites in irregular satellite debris. Icarus, 2013, 223(2): 775–795.

    Google Scholar 

  82. [82]

    Horányi, M. New Jovian ring? Geophysical Research Letters, 1994, 21(11): 1039–1042.

    Google Scholar 

  83. [83]

    Soja, R. H., Altobelli, N., Krüger, H., Sterken, V. J. Dust environment predictions for the ESA L-class mission JUICE. Planetary and Space Science, 2013, 75: 117–128.

    Google Scholar 

  84. [84]

    Sachse, M. A planetary dust ring generated by impactejection from the Galilean satellites. Icarus, 2018, 303: 166–180.

    Google Scholar 

  85. [85]

    Szalay, J. R., Horányi, M. The impact ejecta environment of near earth asteroids. The Astrophysical Journal Letters, 2016, 830(2): L29.

    Google Scholar 

  86. [86]

    Rhoden, A. R., Hurford, T. A., Roth, L., Retherford, K. Linking Europa’s plume activity to tides, tectonics, and liquid water. Icarus, 2015, 253: 169–178.

    Google Scholar 

  87. [87]

    Postberg, F., Kempf, S., Schmidt, J., Brilliantov, N., Beinsen, A., Abel, B., Buck, U., Srama, R. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 2009, 459(7250): 1098–1101.

    Google Scholar 

  88. [88]

    Postberg, F., Schmidt, J., Hillier, J., Kempf, S., Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 2011, 474(7353): 620–622.

    Google Scholar 

  89. [89]

    Krüger, H., Geissler, P., Horányi, M., Grap, A. L., Kempf, S., Srama, R., Moragas-Klostermeyer, G., Moissl, R., Johnson, T. V., Grün, E. Jovian dust streams: a monitor of Io’s volcanic plume activity. Geophysical Research Letters, 2003, 30(21): 2101.

    Google Scholar 

  90. [90]

    Krüger, H., Linkert, G., Linkert, D., Moissl, R., Grn, E. Galileo long-term dust monitoring in the Jovian magnetosphere. Planetary and Space Science, 2005, 53(11): 1109–1120.

    Google Scholar 

  91. [91]

    Zook, H. A., Grün, E., Baguhl, M., Hamilton, D. P., Linkert, G., Liou, J. C., Forsyth, R., Phillips, J. L. Solar wind magnetic field bending of Jovian dust trajectories. Science, 1996, 274(5292): 1501–1503.

    Google Scholar 

  92. [92]

    Krüger, H., Grün, E., Graps, A., Lammers, S. Observations of electromagnetically coupled dust in the Jovian magnetosphere. Astrophysics and Space Science, 1998, 264(1–4): 247–256.

    Google Scholar 

  93. [93]

    Krger, H., Horányi, M., Grün, E. Jovian dust streams: probes of the Io plasma torus. Geophysical Research Letters, 2003, 30(2): 1058.

    Google Scholar 

  94. [94]

    Postberg, F., Kempf, S., Srama, R., Green, S. F., Hillier, J. K., McBride, N., Grün, E. Composition of Jovian dust stream particles. Icarus, 2006, 183(1): 122–134.

    Google Scholar 

  95. [95]

    Horányi, M., Morfill, G., Grün, E. Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature, 1993, 363(6425): 144–146.

    Google Scholar 

  96. [96]

    Horányi, M., Morfill, G., Grn, E. The dusty ballerina skirt of Jupiter. Journal of Geophysical Research, 1993, 98(A12): 21245–21251.

    Google Scholar 

  97. [97]

    Horányi, M., Grün, E., Heck, A. Modeling the Galileo dust measurements at Jupiter. Geophysical Research Letters, 1997, 24(17): 2175–2178.

    Google Scholar 

  98. [98]

    Grün, E., Krüger, H., Graps, A. L., Hamilton, D. P., Heck, A., Linkert, G., Zook, H. A., Dermott. S. F., Fechtig, H., Gustafson, B. A. et al. Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. Journal of Geophysical Research, 1998, 103(E9): 20011–20022.

    Google Scholar 

  99. [99]

    Hamilton, D. P., Burns, J. A. Ejection of dust from Jupiter’s gossamer ring. Nature, 1993, 364(6439): 695–699.

    Google Scholar 

  100. [100]

    Jontof-Hutter, D., Hamilton, D. P. The fate of submicron circumplanetary dust grains I: aligned dipolar magnetic fields. Icarus, 2012, 218(1): 420–432.

    Google Scholar 

  101. [101]

    Jontof-Hutter, D., Hamilton, D. P. The fate of submicron circumplanetary dust grains II: multipolar fields. Icarus, 2012, 220(2): 487–502.

    Google Scholar 

  102. [102]

    Flandes, A. Dust escape from Io. Geophysical Research Letters, 2004, 31(16): L16802.

    Google Scholar 

  103. [103]

    Flandes, A., Krüger, H., Hamilton, D. P., Valdés-Galicia, J. F., Spilker, L., Caballero, R. Magnetic field modulated dust streams from Jupiter in interplanetary space. Planetary and Space Science, 2011, 59(13): 1455–1471.

    Google Scholar 

  104. [104]

    Kuchner, M. J., Reach, W. T., Brown, M. E. A search for resonant structures in the zodiacal cloud with COBE DIRBE: the mars wake and Jupiter’s Trojan clouds. Icarus, 2000, 145(1): 44–52.

    Google Scholar 

  105. [105]

    Jewitt, D. C., Trujillo, C. A., Luu, J. X. Population and size distribution of small Jovian Trojan asteroids. The Astronomical Journal, 2000, 120(2): 1140–1147.

    Google Scholar 

  106. [106]

    Liu, X., Schmidt, J. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust. Astronomy & Astrophysics, 2018, 614: A97.

    Google Scholar 

  107. [107]

    Liou, J. C., Zook, H. A., Jackson, A. A. Radiation pressure, Poynting-Robertson drag, and solar wind drag in the restricted three-body problem. Icarus, 1995, 116(1): 186–201.

    Google Scholar 

  108. [108]

    Liou, J. C., Zook, H. A. An asteroidal dust ring of micron-sized particles trapped in the 1:1 mean motion resonance with Jupiter. Icarus, 1995, 113(2): 403–414.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Space Agency under the project “Jovian Micrometeoroid Environment Model” (JMEM) (Contract No. 4000107249/12/NL/AF) at the University of Oulu, and by the Academy of Finland under the project “Earth and Near-Space System and Environmental Change”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Liu.

Additional information

Xiaodong Liu was born in Shandong Province in 1985. He received his B.S. degree in engineering mechanics from Shandong University, in 2008, and his Ph.D. degree in aeronautical and astronautical science and technology from Tsinghua University, in 2013. He received the grand prize for graduate students at Tsinghua University, and national excellent doctor thesis in the field of aeronautical and astronautical science and technology. Currently he is a postdoctoral researcher in the Astronomy Research Unit at University of Oulu, Finland. His research interest focuses on circumplanetary and interplanetary dust dynamics, tenuous planetary rings, estimate of dust hazard to spacecraft, and orbital dynamics around non-spherical bodies.

Jürgen Schmidt received his diploma degree in theoretical physics from the University of Saarbrcken in Germany, and his Ph.D. degree in theoretical physics from the University of Potsdam, Germany. He is now a professor in the Astronomy Research Unit of the University of Oulu, in Finland. His research interests in the field of celestial mechanics focus on the dynamics of circumplanetary dust and dense planetary rings. He is the coinvestigator in the science teams of the Cassini Cosmic Dust Analyzer, the Surface Dust Mass Analyzer of the Europa Clipper Mission, and the JANUS camera onboard the Jupiter Icy Moons Explorer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Schmidt, J. Dust in the Jupiter system outside the rings. Astrodyn 3, 17–29 (2019). https://doi.org/10.1007/s42064-018-0031-z

Download citation

Keywords

  • cicumplanetary dust
  • interplanetary dust
  • stream particles
  • planetary rings
  • Europa plume
  • Jupiter
  • Galilean moons
  • Trojan asteroids
  • meteoroids
  • space debris