Overview of control-centric integrated design for hypersonic vehicles

Abstract

Hypersonic vehicles (HSVs) exhibit significant advantages over other vehicles, including the wide range of velocity and large airspace types, and these features have contributed to the rapid development of HSVs in the last 20 years. Moreover, hypersonic technologies have become a multidisciplinary research topic in the fields of aerodynamics, propulsion, structure, material, and control. Different types of re-entry gliding, air-breathing cruise, and aerospace vehicles have been designed to realize ambitious tasks, which in turn influenced the technological advancements and process change in the military. This paper summarizes the control-oriented integrated design of HSVs. First, the status of current research on the distinct characteristics and technique issues of HSVs is introduced. Then, the progresses made on complex modeling, guidance and control, and trajectory optimization are elaborated to exhibit the significant research interest in hypersonic technologies. The control-integrated design of HSVs is emphasized to solve the multidisciplinary design problems associated with the model and its control and trajectory. Various strategies regarding the multidisciplinary optimization design are also proposed to solve the integrated design problem. Finally, suggestions are provided for the control-oriented integrated design of HSVs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Sun, C. Y., Mu, C. X., Yu, Y. Some control problems for near space hypersonic vehicles. Acta Automatica Sinica, 2013, 39(11): 1901–1913. (in Chinese)

    Google Scholar 

  2. [2]

    Lu, Y. P., Chen, B. Y., Liu, Y. B., Xiao, D. B. Control relevant design optimization for air-breathing hypersonic vehicle considering performance limitation. Control Theory & Applications, 2014, 31(12): 1695–1706. (in Chinese)

    Google Scholar 

  3. [3]

    Ye, Y. D., Zhao, Z. L., Tian, H., Zhang, X. F. The stability analysis of rolling motion of hypersonic vehicles and its validations. Science China Physics, Mechanics & Astronomy, 2014, 57(12): 2194–2204.

    Google Scholar 

  4. [4]

    Spain, C. V., Soistmann, D. L., Parker, E. C., Gibbons, M. D., Gilbert, M. G. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center. The 2nd International Aerospace Planes Conference, 1990.

    Google Scholar 

  5. [5]

    Liang, X. G., Tian, H. L. Analysis of the development status and the defense problem of near space hypersonic vehicle. AERO Weaponry, 2016(4): 3–10. (in Chinese)

    Google Scholar 

  6. [6]

    Oppenheimer, M. W., Skujins, T., Bolender, M. A., Doman, D. B. A flexible hypersonic vehicle model developed with piston theory. The AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2007.

    Google Scholar 

  7. [7]

    Mcnamara, J. J., Friedmann, P. P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future. AIAA Journal, 2011, 49(6): 1089–1122.

    Google Scholar 

  8. [8]

    Xu, B., Shi, Z. K. An overview on flight dynamics and control approaches for hypersonic vehicles. Science China Information Sciences, 2015, 58(7): 1–19.

    MathSciNet  Google Scholar 

  9. [9]

    Dalle, D. J., Frendreis, S. G. V., Driscoll, J. F., Cesnik, C. E. S. Hypersonic vehicle flight dynamics with coupled aerodynamic and reduced-order propulsive models. The AIAA Atmospheric Flight Mechanics Conference, 2010.

    Google Scholar 

  10. [10]

    Shaughnessy, J. D., Pinckney, S. Z., Mcminn, J. D., Cruz, C. I., Kelley, M. L. Hypersonic vehicle simulation model: winged-cone configuration. NASA-TM-102610, NASA, 1990.

    Google Scholar 

  11. [11]

    Chavez, F. R., Schmidt, D K. Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1308–1319.

    MATH  Google Scholar 

  12. [12]

    Parker, J. T., Serrani, A., Yurkovich, S., Bolender, M. A., Doman, D. B. Control-oriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856–869.

    Google Scholar 

  13. [13]

    Nguyen, A. T., Reiter, S., Rigo, P. A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 2014, 113: 1043–1058.

    Google Scholar 

  14. [14]

    Kuya, Y., Takeda, K., Zhang, X., Forrester, A. I. J. Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA Journal, 2011, 49(2): 289–298, DOI: 10.2514/1.J050384.

    Google Scholar 

  15. [15]

    Nguyen, N. V., Tyan, M., Jin, S. et al. Adaptive multifidelity constraints method for effcient multidisciplinary missile design framework. Journal of Spacecraft and Rockets, 2016, 53(1):1–11.

    Google Scholar 

  16. [16]

    Chen, B. Y., Shen, H. D., Lei, H., Liu, Y. B., Lu, Y. P. Sensitivity analysis of performance for control-oriented model of an air-breathing hypersonic vehicle. The 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017.

    Google Scholar 

  17. [17]

    Dalle, D. J., Torrez, S. M., Driscoll, J. F. Sensitivity of flight dynamics of hypersonic vehicles to design parameters. The 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, 2012.

    Google Scholar 

  18. [18]

    Trocine, L., Malone, L C. Finding important independent variables through screening designs: a comparison of methods. In: Proceedings of 2000 Winter Simulation Conference, 2000.

    Google Scholar 

  19. [19]

    Ascough II, J. C., Green, T. R., Ma, L., Ahjua, L. R. Key criteria and selection of sensitivity analysis methods applied to natural resource models. Proceedings of 2005 International Congress on Modeling and Simulation, 2005, 2463–2469.

    Google Scholar 

  20. [20]

    Iooss, B., Lematre, P. A review on global sensitivity analysis methods. Uncertainty Management in Simulation-Optimization of Complex Systems, 2015, 101–122.

    Google Scholar 

  21. [21]

    Forrester, A. I. J., Keane, A. J. Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 2009, 45(1–3): 50–79.

    Google Scholar 

  22. [22]

    Lophaven, S. N., Nielsen, H. B., Sndergaard J. Aspects of the matlab toolbox DACE. Informatics and Mathematical Modelling, Technical University of Denmark, DTU, 2002.

    Google Scholar 

  23. [23]

    Sachs, G. Longitudinal long-term modes in super- and hypersonic flight. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 539–541.

    Google Scholar 

  24. [24]

    Sachs, G. Path-attitude decoupling and flying qualities implications in hypersonic flight. Aerospace Science and Technology, 1998, 2(1): 49–59.

    MATH  Google Scholar 

  25. [25]

    Okajima, H., Asai, T. Performance limitation of tracking control problem for a class of references. IEEE Transactions on Automatic Control, 2011, 56(11): 2723–2727.

    MathSciNet  MATH  Google Scholar 

  26. [26]

    Foghahaayee, H. N., Menhaj, M. B., Talebi, H. A., Khoshnam, M. Performance limitations of nonminimum phase affne nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(12): 6430–6437.

    MathSciNet  MATH  Google Scholar 

  27. [27]

    Fiorentini, L., Serrani, A. Nonlinear adaptive control design for non-minimum phase hypersonic vehicle models with minimal control authority. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, 2009.

    Google Scholar 

  28. [28]

    Fiorentini, L., Serrani, A., Bolender, M. A., Doman, D. B. Nonlinear control of non-minimum phase hypersonic vehicle models. In: Proceedings of 2009 American Control Conference, 2009.

    Google Scholar 

  29. [29]

    Seron, M. M., Braslavsky, J. H., Goodwin, G. C. Fundamental limitations in filtering and control. Springer Science and Business Media, 2012.

    Google Scholar 

  30. [30]

    Skogestad, S., Postlethwaite, I. Multivariate feedback control. Advances in Industrial Control, 2005, 4: 55–64.

    Google Scholar 

  31. [31]

    Hu, T. S., Lin, Z. L., Qiu, L. An explicit description of null controllable regions of linear systems with saturating actuators. Systems & Control Letters, 2002, 47(1): 65–78.

    MathSciNet  MATH  Google Scholar 

  32. [32]

    Scibile, L., Kouvaritakis, B. Stability region for a class of open-loop unstable linear systems: theory and application. Automatica, 2000, 36(1): 37–44.

    MathSciNet  MATH  Google Scholar 

  33. [33]

    Soloway, D. I., Ouzts, P. J., Wolpert, D. H., Moerder, D. D., Benavides, J. V. The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization. The 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, 2009, 7329.

    Google Scholar 

  34. [34]

    Kariwala, V. Fundamental limitation on achievable decentralized performance. Automatica, 2007, 43(10): 1849–1854.

    MathSciNet  MATH  Google Scholar 

  35. [35]

    Seron, M. M., Braslavsky, J. H., Kokotovic, P. V., Mayne, D. Q. Feedback limitations in nonlinear systems: from Bode integrals to cheap control. IEEE Transactions on Automatic Control, 1999, 44(4): 829–833.

    MathSciNet  MATH  Google Scholar 

  36. [36]

    Kariwala, V., Skogestad, S., Forbes, J. F., Meadows, E. S. Input performance limitations of feedback control. In: Proceedings of 2004 American Control Conference, 2004.

    Google Scholar 

  37. [37]

    Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193–207.

    MATH  Google Scholar 

  38. [38]

    Huang, C. Q., Guo, H. F., Ding, D. L. A survey of trajectory optimization and guidance for hypersonic gliding vehicle. Journal of Astronautics, 2014, 35(4): 369–379. (in Chinese)

    Google Scholar 

  39. [39]

    Navaratne, R., Tessaro, M., Gu, W. Q., Sethi, V., Pilidis, P., Sabatini, R., Zammit-Mangion, D. Generic framework for multi-disciplinary trajectory optimization of aircraft and power plant integrated systems. Journal of Aeronautics & Aerospace Engineering, 2013, 2(1): 1–14.

    Google Scholar 

  40. [40]

    Betts, J. T., Frank, P. D. A sparse nonlinear optimization algorithm. Journal of Optimization Theory and Applications, 1994, 82(3): 519–541.

    MathSciNet  MATH  Google Scholar 

  41. [41]

    Jain, S., Tsiotras, P. Trajectory optimization using multiresolution techniques. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1424–1436.

    Google Scholar 

  42. [42]

    Chen, X. Q., Hou Z. X., Liu, J. X. A multiresolution technique-based gliding vehicle trajectory optimization algorithm. Journal of Astronautics, 2010, 31(8): 1944–1950. (in Chinese)

    Google Scholar 

  43. [43]

    Dutta, P., Bhattacharya, R. Nonlinear estimation of hypersonic state trajectories in Bayesian framework with polynomial chaos. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1765–1778.

    Google Scholar 

  44. [44]

    Guo, H. F., Huang, C. Q., Ding, D. L., Xiao, H. Trajectory optimization for hypersonic gliding vehicle considering stochastic disturbance. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1281–1290. (in Chinese)

    Google Scholar 

  45. [45]

    Schmidt, D. K., Velapoldi, J. R. Flight dynamics and feedback guidance issues for hypersonic airbreathing vehicles. The Guidance, Navigation, and Control Conference and Exhibit, 1999.

    Google Scholar 

  46. [46]

    Harpold, J. C., Graves, Jr. C. A. Shuttle entry guidance. The 25th Anniversary Conference of the American Astronomical Society, 1978.

    Google Scholar 

  47. [47]

    Lu, P., Forbes, S., Baldwin, M. Gliding guidance of high L/D hypersonic vehicles. The AIAA Guidance, Navigation, and Control (GNC) Conference, 2013, 4648.

    Google Scholar 

  48. [48]

    Milam, M. B. Real-time optimal trajectory generation for constrained dynamical systems. Ph.D. Dissertation, California Institute of Technology, California, USA, 2003.

    Google Scholar 

  49. [49]

    Carson, J. M., Epstein, M. S., MacMynowski, D. G., Murray, R. M. Optimal nonlinear guidance with inner-loop feedback for hypersonic re-entry. The 2006 American Control Conference, 2006.

    Google Scholar 

  50. [50]

    Gregory, I. M., Chowdhry, R. S., Mcminn, J. D., Shaughnessy, J. D. Hypersonic vehicle model and control law development using H and synthesis. NASA Technical Memorandum 4562, National Aeronautics and Space Administration, 1994.

  51. [51]

    Sigthorsson, D. O., Jankovsky, P., Serrani, A., Yurkovich, S., Bolender, M. A., Doman, D. B. Robust linear output feedback control of an airbreathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1052–1066.

    Google Scholar 

  52. [52]

    Groves, K. P., Sigthorsson, D. O., Serrani, A., Yurkovich, S., Bolender, M. A., Doman, D. B. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. In: Proceedings of 2005 AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.

    Google Scholar 

  53. [53]

    Gibson, T. E., Annaswamy, A. M. Adaptive control of hypersonic vehicles in the presence of thrust and actuator uncertainties. In: Proceedings of 2008 AIAA Guidance, Navigation and Control Conference and Exhibit, 2008.

    Google Scholar 

  54. [54]

    Huo, Y., Mirmirani, M., Ioannou, P., Kuipers, M. Altitude and velocity tracking control for an airbreathing hypersonic cruise vehicle. In: Proceedings of 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006.

    Google Scholar 

  55. [55]

    Marcos, A., Balas, G. J. Development of linear- parameter-varying models for aircraft. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 218–228.

    Google Scholar 

  56. [56]

    Sigthorsson, D. O., Serrani, A. Development of linear parameter-varying models of hypersonic air-breathing vehicles. In: Proceedings of 2009 AIAA Guidance, Navigation, and Control Conference, 2009.

    Google Scholar 

  57. [57]

    Sigthorsson, D. O., Serrani, A., Bolender, M. A., Doman, D. B. LPV control design for over-actuated hypersonic vehicles models. In: Proceedings of 2009 AIAA Guidance, Navigation, and Control Conference, 2009.

    Google Scholar 

  58. [58]

    Ge, D. M., Huang, X. L., Gao, H. J. Multi-loop gain- scheduling control of flexible air-breathing hypersonic vehicle. International Journal of Innovative Computing, Information and Control, 2011, 7(10): 5865–5880.

    Google Scholar 

  59. [59]

    Huang, Y. Q., Sun, C. Y., Qian, C. S., Zhang, J. M., Wang, L. Polytopic LPV modeling and gain-scheduled switching control for a flexible air-breathing hypersonic vehicle. Journal of Systems Engineering and Electronics, 2013, 24(1): 118–127.

    Google Scholar 

  60. [60]

    Lu, B., Wu, F. Switching LPV control designs using multiple parameter-dependent Lyapunov functions. Automatica, 2004, 40(11): 1973–1980.

    MathSciNet  MATH  Google Scholar 

  61. [61]

    Zhang, Z. H., Yang, L. Y., Shen, G. Z. Switching LPV control method in wide flight envelope for hypersonic vehicles. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1706–1716. (in Chinese)

    Google Scholar 

  62. [62]

    Lu, Q. G., Zhang, L. X., Shi, P., Karimi, H. R. Control design for a hypersonic aircraft using a switched linear parameter-varying system approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013, 227(1): 85–95.

    Google Scholar 

  63. [63]

    Xiao, D. B., Liu, M. Y., Liu, Y. B., Lu, Y. P. Switching control of a hypersonic vehicle based on guardian maps. Acta Astronautica, 2016, 122: 294–306.

    Google Scholar 

  64. [64]

    Saussié, D., Saydy, L., Akhrif, O., Bérard, C. Gain scheduling with guardian maps for longitudinal flight control. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1045–1059.

    Google Scholar 

  65. [65]

    Qin, W. W., Liu, J. Y., Liu, G., He, B., Wang, L. X. Robust parameter dependent receding horizon H control of flexible air-breathing hypersonic vehicles with input constraints. Asian Journal of Control, 2015, 17(2): 508–522.

    MathSciNet  MATH  Google Scholar 

  66. [66]

    Rehman, O. U., Petersen, I. R. Feedback linearization and guaranteed cost control of uncertain nonlinear systems and its application to an air-breathing hypersonic flight vehicle. In: Proceedings of the 8th Asian Control Conference, 2011.

    Google Scholar 

  67. [67]

    Gao, G., Wang, J. Z. Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties. Journal of the Franklin Institute, 2013, 350(5): 1155–1188.

    MathSciNet  MATH  Google Scholar 

  68. [68]

    Rehman, O. U., Fidan, B., Petersen, I. R. Robust minimax optimal control of nonlinear uncertain systems using feedback linearization with application to hypersonic flight vehicles. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, 2009.

    Google Scholar 

  69. [69]

    Georgie, J., Valasek, J. Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic reentry vehicles. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 811–819.

    Google Scholar 

  70. [70]

    Da Costa, R. R., Chu, Q. P., Mulder, J. A. Reentry flight controller design using nonlinear dynamic inversion. Journal of Spacecraft and Rockets, 2003, 40(1): 64–71.

    Google Scholar 

  71. [71]

    Sieberling, S., Chu, Q. P., Mulder, J. A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732–1742.

    Google Scholar 

  72. [72]

    Poulain, F., Piet-Lahanier, H., Serre, L. Nonlinear control of an airbreathing hypersonic vehicle: a backstepping approach. The 16th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2009.

    Google Scholar 

  73. [73]

    Zong, Q., Ji, Y. H., Zeng, F. L., Liu, H. L. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem. Aerospace Science and Technology, 2012, 23(1): 409–417.

    Google Scholar 

  74. [74]

    Hu, Q. L., Meng, Y. Adaptive backstepping control for air-breathing hypersonic vehicle with actuator dynamics. Aerospace Science and Technology, 2017, 67: 412–421.

    Google Scholar 

  75. [75]

    Wu, G. H., Meng, X. Y. Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle. Aerospace Science and Technology, 2016, 54: 174–182.

    Google Scholar 

  76. [76]

    Bu, X. W., Wei, D. Z., Wu, X. Y., Huang, J. Q. Guaranteeing preselected tracking quality for air-breathing hypersonic non-affne models with an unknown control direction via concise neural control. Journal of the Franklin Institute, 2016, 353(13): 3207–3232.

    MathSciNet  MATH  Google Scholar 

  77. [77]

    Wang, P. F., Wang, J., Bu, X. W., Luo, C., Tan, S. L. Adaptive fuzzy back-stepping control of a flexible air-breathing hypersonic vehicle subject to input constraints. Journal of Intelligent & Robotic Systems, 2017, 87(3–4): 565–582.

    Google Scholar 

  78. [78]

    Plestan, F., Shtessel, Y., Brgeault, V., Poznyak, A. New methodologies for adaptive sliding mode control. International Journal of Control, 2010, 83(9): 1907–1919.

    MathSciNet  MATH  Google Scholar 

  79. [79]

    Levant, A. Homogeneity approach to high-order sliding mode design. Automatica, 2005, 41(5): 823–830.

    MathSciNet  MATH  Google Scholar 

  80. [80]

    Koshkouei, A. J., Burnham, K. J., Zinober, A S. I. Dynamic sliding mode control design. IEE Proceedings- Control Theory and Applications, 2005, 152(4): 392–396.

    Google Scholar 

  81. [81]

    Zong, Q., Wang, J., Tao, Y. Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle. International Journal of Robust and Nonlinear Control, 2013, 23(15): 1718–1736.

    MathSciNet  MATH  Google Scholar 

  82. [82]

    Wang, J., Zong, Q., Tian, B. L., Liu, H. L. Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode. Journal of Systems Engineering and Electronics, 2013, 24(2): 288–295.

    Google Scholar 

  83. [83]

    Wang, J., Zong, Q., Su, R., Tian, B. L. Continuous high order sliding mode controller design for a flexible air- breathing hypersonic vehicle. ISA Transactions, 2014, 53(3): 690–698.

    Google Scholar 

  84. [84]

    Zong, Q., Wang, J., Tian, B. L., Tao, Y. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerospace Science and Technology, 2013, 27(1): 127–137.

    Google Scholar 

  85. [85]

    Mickle, M. C., Huang, R., Zhu, J. J. Unstable, nonminimum phase, nonlinear tracking by trajectory linearization control. In: Proceedings of 2004 IEEE International Conference on Control Applications, 2004.

    Google Scholar 

  86. [86]

    Shao, X. L., Wang, H. L. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer. ISA Transactions, 2014, 53(6): 1771–1786.

    Google Scholar 

  87. [87]

    Shao, X. L., Wang, H. L. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties. ISA Transactions, 2015, 54: 27–38.

    Google Scholar 

  88. [88]

    Pu, Z. Q., Tan, X. M., Fan, G. L., Yi, J. Q. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle. Acta Astronautica, 2014, 101: 16–32.

    Google Scholar 

  89. [89]

    Teng, T., Yang, C. G., Dai, S. L., Wang, M. Tracking performance and global stability guaranteed neural control of uncertain hypersonic flight vehicle. International Journal of Advanced Robotic Systems, 2016, 14(1): 1–11.

    Google Scholar 

  90. [90]

    Qin, W. W., He, B., Liu, G., Zhao, P. T. Robust model predictive tracking control of hypersonic vehicles in the presence of actuator constraints and input delays. Journal of the Franklin Institute, 2016, 353(17): 4351–4367.

    MathSciNet  MATH  Google Scholar 

  91. [91]

    Yi, Y., Xu, L. B., Shen, H., Fan, X. X. Disturbance observer-based L1 robust tracking control for hypersonic vehicles with T-S disturbance modeling. International Journal of Advanced Robotic Systems, 2016, 13(6): 1–10.

    Google Scholar 

  92. [92]

    An, H., Liu, J. X., Wang, C. H., Wu, L. Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3038–3049.

    Google Scholar 

  93. [93]

    Parker, J. T., Serrani, A., Yurkovich, S., Bolender, M. A., Doman, D. B. Approximate feedback linearization of an air-breathing hypersonic vehicle. In: Proceedings of 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006.

    Google Scholar 

  94. [94]

    Wu, X. Y., Liu, R., Luo, S. B., Wang, Z. G. An integrated optimization of hypersonic forebody/inlet based on surrogate models. Journal of Aerospace Power, 2008, 23(5): 796–802. (in Chinese)

    Google Scholar 

  95. [95]

    Bowcutt, K. G. Multidisciplinary optimization of airbreathing hypersonic vehicles. Journal of Propulsion and Power, 2001, 17(6): 1184–1190.

    Google Scholar 

  96. [96]

    Lamorte, N., Glaz, B., Friedmann, P. P., Culler, A. J., Crowell, A. R., McNamara, J. A. Uncertainty propagation in hypersonic aerothermoelastic analysis. Journal of Aircraft, 2014, 51(1): 192–203.

    Google Scholar 

  97. [97]

    Zong, Q., You, M., Zeng, F. L., Dou, L. Q. Aeroservoelastic modeling and analysis of a six-DOF hypersonic flight vehicle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(7): 1204–1251.

    Google Scholar 

  98. [98]

    Liu, C. Z., Duan, Y. H., Cai, J. S., Wang, J. F. Application of the 3D multi-block CST method to hypersonic aircraft optimization. Aerospace Science and Technology, 2016, 50: 295–303.

    Google Scholar 

  99. [99]

    Guruswamy, G. P. Dynamic stability analysis of hypersonic transport during reentry. AIAA Journal, 2016, 54(11): 3374–3381.

    Google Scholar 

  100. [100]

    Zhao, J., Zhou, R. Pigeon-inspired optimization applied to constrained gliding trajectories. Nonlinear Dynamics, 2015, 82(4): 1781–1795.

    MathSciNet  Google Scholar 

  101. [101]

    Zhang, B., Tang, S., Pan, B. F. Automatic load relief numerical predictor-corrector guidance for low L/D vehicles return from low Earth orbit. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2106–2118.

    Google Scholar 

  102. [102]

    Lin, Q., Loxton, R., Teo, K. L., Wu, Y. H. Optimal control problems with stopping constraints. Journal of Global Optimization, 2015, 63(4): 835–861.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by Aerospace Science and Technology Innovation Fund (CASC2016), and Six Talent Peaks Project in Jiangsu Province (KTHY-025).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanbin Liu.

Additional information

Yanbin Liu received his Ph.D. degree in navigation, guidance and control from Nanjing University of Aeronautics and Astronautics, China, in 2007. Now he is an associate professor at the College of Astronautics Nanjing University of Aeronautics and Astronautics. His research interest focuses on flight control of hypersonic vehicles. Currently, he is doing research related to the control integrated design of hypersonic vehicles, including the modeling, control law, and multidisciplinary optimization.

Boyi Chen is a Ph.D. candidate from the College of Astronautics, Nanjing University of Aeronautics and Astronautics. His research interest focuses on integrated control of new concept aircrafts, including dynamical modeling, stability analysis, and control-oriented optimization.

Yuhui Li received his master degree in navigation, guidance and control from Nanjing University of Aeronautics and Astronautics, China, in 2018. Now he is a researcher at China Institute of Aeronautical Radio and Electronics. His research interest focuses on flight control algorithms.

Haidong Shen is now a Ph.D. candidate from Nanjing University of Aeronautics and Astronautics. His research interest focuses on dynamic modeling and control of hypersonic vehicles. Currently, he is doing research related to horizontal-takeoff-horizontal-landing (HTHL) aerospace vehicles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, B., Li, Y. et al. Overview of control-centric integrated design for hypersonic vehicles. Astrodyn 2, 307–324 (2018). https://doi.org/10.1007/s42064-018-0027-8

Download citation

Keywords

  • hypersonic vehicles
  • integrated design
  • flight control