Skip to main content

Advertisement

Log in

A resource-efficient priority scheduler for time-sensitive networking switches

  • Regular Paper
  • Published:
CCF Transactions on Networking

Abstract

Time-sensitive networking (TSN) supports the integration of standard Ethernet and industrial control networ k by providing differential quality of service (QoS). A priority scheduler is typically the central component of TSN switches for QoS. Furthermore, TSN must deal with various requirements from various domains. As a result, an FPGA-based solution becomes one of the most promising solutions for TSN switches due to its programmability and customizability. But, resource usually becomes a bottleneck in such a solution. This study proposes a flattened-priority approach to develop a new resource-efficient priority scheduler called f-iSLIP by converting the widely used nonpriority scheduler, iSLIP. We implement f-iSLIP in our TSN switches and compare it with previous priority schedulers. It reduces the resource cost of lookup tables (LUTs) by 30–50% on average and the logic latency by 20–30% on average. Moreover, the throughput tests demonstrate that it prefers high priorities with no performance loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldi, M., Marchetto, G.: Time-driven priority router implementation: analysis and experiments. IEEE Trans. Comput. 62(5), 1017–1030 (2013)

    Article  MathSciNet  Google Scholar 

  • Carvajal, G., Araneda, L., Wolf, A., Figueroa, M., Fischmeister, S.: Integrating dynamic-tdma communication channels into cots ethernet networks. IEEE Trans. Industr. Inf. 12(5), 1806–1816 (2016)

    Article  Google Scholar 

  • CISCO: White paper: Cisco nexus 5548p switch architecture (2010)

  • Craciunas, S.S., Oliver, R.S., Chmelík, M., Steiner, W.: Scheduling real-time communication in ieee 802.1qbv time sensitive networks. In: Proceedings of the 24th International Conference on Real-Time Networks and Systems, pp. 183–192. ACM (2016)

  • Decotignie, J.D.: Ethernet-based real-time and industrial communications. Proc. IEEE 93(6), 1102–1117 (2005)

    Article  Google Scholar 

  • Decotignie, J.D.: The many faces of industrial ethernet [past and present]. IEEE Ind. Electron. Magn. 3(1) (2009)

  • Felser, M.: Real-time ethernet-industry prospective. Proc. IEEE 93(6), 1118–1129 (2005)

    Article  Google Scholar 

  • Felser, M.: Real time ethernet: Standardization and implementations. In: Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 3766–3771. IEEE (2010)

  • Galloway, B., Hancke, G.P., et al.: Introduction to industrial control networks. IEEE Commun. Surv. Tutor. 15(2), 860–880 (2013)

    Article  Google Scholar 

  • Gupta, P., McKeown, N.: Designing and implementing a fast crossbar scheduler. IEEE Micro. 19(1), 20–28 (1999)

    Article  Google Scholar 

  • H3C: White paper: Qos technology (2008)

  • H3C Technologies: H3c s9500e multi-service core switch. Data Sheet (2011)

  • Hanzalek, Z., Burget, P., Sucha, P.: Profinet io irt message scheduling with temporal constraints. IEEE Trans. Industr. Inf. 6(3), 369–380 (2010)

    Article  Google Scholar 

  • Hopcroft, J.E., Karp, R.M.: An \({}^{\wedge }\)5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  Google Scholar 

  • Hu, M., Luo, J., Wang, Y., Lukasiewycz, M., Zeng, Z.: Holistic scheduling of real-time applications in time-triggered in-vehicle networks. IEEE Trans. Industr. Inf. 10(3), 1817–1828 (2014)

    Article  Google Scholar 

  • IEC: Iec 613751: Electric railway equipmenttrain buspart 1: Train communication network (2007)

  • IEEE: Ieee 802.1q-2014:ieee standard for local and metropolitan area networks–bridges and bridged networks (2014). http://standards.ieee.org/getieee802/download/802-1Q-2014_mibs.zip

  • ISO Technical Committee: Road vehicles—controller area network (can)—part 2: High-speed medium access unit (2016)

  • Li, C.S., Ofek, Y., Yung, M.: “Time-driven priority” flow control for real-time heterogeneous internetworking. In: INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the Next Generation. Proceedings IEEE, vol. 1, pp. 189–197. IEEE (1996)

  • Li, Z., Wan, H., Deng, Y., Zhao, X., Gao, Y., Song, X., Gu, M.: Time-triggered switch-memory-switch architecture for time-sensitive networking switches. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(1), 185–198 (2020)

    Article  Google Scholar 

  • Lo Bello, L., Steiner, W.: A perspective on IEEE time-sensitive networking for industrial communication and automation systems. Proc. IEEE 107(6), 1094–1120 (2019)

    Article  Google Scholar 

  • Loeser, J., Haertig, H.: Low-latency hard real-time communication over switched ethernet. In: Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference on, pp. 13–22. IEEE (2004)

  • McKeown, N.: The islip scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw. 7(2), 188–201 (1999)

    Article  Google Scholar 

  • Minagar, A.R., Safavi, S.M.: The optimized prioritized islip scheduling algorithm for input-queued switches with ability to support multiple priority levels. In: Telecommunications, 2003. ICT 2003. 10th International Conference on, vol. 2, pp. 1680–1685. IEEE (2003)

  • de Moura, L., Dutertre, B., Shankar, N.: A tutorial on satisfiability modulo theories. In: Proceedings of the 19th International Conference on Computer Aided Verification, CAV’07, pp. 20–36 (2007)

  • Nayak, N.G., Dürr, F., Rothermel, K.: Time-sensitive software-defined network (tssdn) for real-time applications. In: Proceedings of the 24th International Conference on Real-Time Networks and Systems, pp. 193–202. ACM (2016)

  • Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., Fugal, H.: Fastpass: A centralized “zero-queue” datacenter network. In: Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pp. 307–318. ACM (2014)

  • Pozo, F., Rodriguez-Navas, G., Hansson, H., Steiner, W.: Smt-based synthesis of tethernet schedules: a performance study. In: 10th IEEE International Symposium on Industrial Embedded Systems (SIES), pp. 1–4 (2015)

  • Pozo, F., Steiner, W., Rodriguez-Navas, G., Hansson, H.: A decomposition approach for smt-based schedule synthesis for time-triggered networks. In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), pp. 1–8 (2015)

  • Srinivasan, K.: An engineering approach to computer networking. Atm Networks the Internet and the Telephone Network (1997)

  • Steiner, W.: An evaluation of smt-based schedule synthesis for time-triggered multi-hop networks. In: Proceedings of the 2010 31st IEEE Real-Time Systems Symposium, RTSS ’10, pp. 375–384 (2010)

  • Tămaş-Selicean, D., Pop, P., Steiner, W.: Design optimization of ttethernet-based distributed real-time systems. Real-Time Syst. 51(1), 1–35 (2015)

    Article  Google Scholar 

  • Tarjan, R.E.: Data structures and network algorithms. SIAM (1983)

  • Xilinx: 7 series fpgas overview (2016). www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

  • Zhang, B., Wan, X., Luo, J., Shen, X.: A nearly optimal packet scheduling algorithm for input queued switches with deadline guarantees. IEEE Trans. Comput. 64(6), 1548–1563 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is sponsored in part by the National Key Research and Development Program of China (No. 2018YFB1702600), in part by the Fundamental Research Funds for the Central Universities (No. 2019RC046) and the Project funded by China Postdoctoral Science Foundation (No. 2019M660439), and in part by the Dedicated Research Project of Wuhu (No. 2019DX03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wan, H., Deng, Y. et al. A resource-efficient priority scheduler for time-sensitive networking switches. CCF Trans. Netw. 3, 21–34 (2020). https://doi.org/10.1007/s42045-020-00034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42045-020-00034-x

Keywords

Navigation