Anders, Y., Hardy, I., Pauen, S., Ramseger, J., Sodian, B., & Steffensky, M. (2018a). Early science education—goals and process-related quality criteria for science teaching. Opladen: Barbara Budrich.
Google Scholar
Anders, Y., Hardy, I., Pauen, S., Steffensky, M., Ramseger, J., Sodian, B., & Tytler, R. (2018b). Goals at the level of the children. In “Haus der kleinen Forscher” Foundation (Ed.), Early science education—Goals and process-related quality criteria for science teaching (pp. 41–74). Opladen: Barbara Budrich.
Google Scholar
Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., et al. (2009). Learning and scientific reasoning. Science, 323(5914), 586–587. https://doi.org/10.1126/science.1167740.
Article
Google Scholar
Bauer, J. R., & Booth, A. E. (2019). Exploring potential cognitive foundations of scientific literacy in preschoolers: causal reasoning and executive function. Early Childhood Research Quarterly, 46, 275–284. https://doi.org/10.1016/j.ecresq.2018.09.007.
Article
Google Scholar
Butler, L. P. (2020). The empirical child? A framework for investigating the development of scientific habits of mind. Child Development Perspectives, 14(1), 34–40. https://doi.org/10.1111/cdep.12354.
Article
Google Scholar
Bybee, R. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth, NH: Heinemann.
Google Scholar
Cannady, M. A., Vincent-Ruz, P., Chung, J. M., & Schunn, C. D. (2019). Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemporary Educational Psychology, 59, 101802. https://doi.org/10.1016/j.cedpsych.2019.101802.
Article
Google Scholar
Carstensen, C. H., Lankes, E. M., & Steffensky, M. (2011). Ein Modell zur Erfassung naturwissenschaftlicher Kompetenz im Kindergarten. Zeitschrift für Erziehungswissenschaft, 14(4), 651–669. https://doi.org/10.1007/s11618-011-0240-1.
Article
Google Scholar
Chen, Z., & Klahr, D. (1999). All other things being equal: acquisition and transfer of the control of variables strategy. Child Development, 70, 1098–1120. https://doi.org/10.1111/1467-8624.00081.
Article
Google Scholar
Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Open University Press: Maidenhead.
Google Scholar
Edelsbrunner, P. A., Schalk, L., Schumacher, R., & Stern, E. (2018). Variable control and conceptual change: a large-scale quantitative study in elementary school. Learning and Individual Differences, 66, 38–53. https://doi.org/10.1016/j.lindif.2018.02.003.
Article
Google Scholar
Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., et al. (2014). Scientific reasoning and argumentation: advancing an interdisciplinary research agenda in education. Frontline Learning Research, 2(3), 28–45. https://doi.org/10.14786/flr.v2i3.96.
Article
Google Scholar
Franse, R. K., Van Schijndel, T. J., & Raijmakers, M. E. (2020). Parental pre-knowledge enhances guidance during inquiry-based family learning in a museum context: an individual differences perspective. Frontiers in Psychology, 11, 1047. https://doi.org/10.3389/fpsyg.2020.01047.
Article
Google Scholar
Fridman, R., Eden, S., & Spektor-Levy, O. (2020). Scientific reasoning and argumentation: advancing an interdisciplinary research agenda in education. Frontiers in Psychology, 11, 1790. https://doi.org/10.3389/fpsyg.2020.01790.
Article
Google Scholar
Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research, and policy implications. Science, 337, 1623–1627. https://doi.org/10.1126/science.1223416.
Article
Google Scholar
van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. https://doi.org/10.1016/j.lindif.2016.06.006.
Article
Google Scholar
van der Graaf, J., Segers, E., & Verhoeven, L. (2018). Individual differences in the development of scientific thinking in kindergarten. Learning and Instruction, 56, 1–9. https://doi.org/10.1016/j.learninstruc.2018.03.005.
Article
Google Scholar
Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccillo, J. (2009). Science in the preschool classroom: a programmatic research agenda to improve science readiness. Early Education and Development, 20, 238–264. https://doi.org/10.1080/10409280802595441.
Article
Google Scholar
Grob, A., Meyer, C. S., & Hagmann-von Arx, P. (2009). Intelligence and development scales. Bern: Huber.
Google Scholar
Hardy, I., Kleickmann, T., Koerber, S., Mayer, D., Möller, K., & Pollmeier, J. (2010). Die Modellierung naturwissenschaftlicher Kompetenz im Grundschulalter. Projekt Science‑P. In E. Klieme, D. Leutner & M. Kenk (Eds.), Kompetenzmodellierung. Zwischenbilanz des DFG-Schwerpunktprogramms und Perspektiven des Forschungsansatzes. Zeitschrift für Pädagogik, Beiheft, (Vol. 56, pp. 115–125). Weinheim: Beltz.
Google Scholar
Inhelder B, & Piaget J. (1958). The growth of logical thinking: From childhood to adolescence. New York, NY: Basic Books
Book
Google Scholar
Kastner-Koller, U., & Deimann, P. (1998). Wiener Entwicklungstest (WET) [Vienna development test]. Göttingen: Hogrefe.
Google Scholar
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971–975. https://doi.org/10.1126/science.1204528.
Article
Google Scholar
Kloos, H., & Van Orden, G. C. (2005). Can a preschooler’s mistaken belief benefit learning? Swiss Journal of Psychology, 64(3), 195–205. https://doi.org/10.1024/1421-0185.64.3.195.
Article
Google Scholar
Koerber, S., & Osterhaus, C. (2019). Individual differences in early scientific thinking: assessment, cognitive influences, and their relevance for science learning. Journal of Cognition and Development, 20(4), 510–533. https://doi.org/10.1080/15248372.2019.1620232.
Article
Google Scholar
Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., & Sodian, B. (2015). The development of scientific thinking in elementary school: a comprehensive inventory. Child Development, 86(1), 327–336. https://doi.org/10.1111/cdev.12298.
Article
Google Scholar
Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: preschoolers’ ability to evaluate covariation evidence. Swiss Journal of Psychology, 64(3), 141–152. https://doi.org/10.1024/1421-0185.64.3.141.
Article
Google Scholar
Köksal-Tuncer, Ö., & Sodian, B. (2018). The development of scientific reasoning: hypothesis testing and argumentation from evidence in young children. Cognitive Development, 48, 135–145. https://doi.org/10.1016/j.cogdev.2018.06.011.
Article
Google Scholar
Kuhn, D. (2002). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 371–393). Malden: Blackwell. https://doi.org/10.1002/9780470996652.ch17.
Chapter
Google Scholar
Lazonder, A. W., & Harmsen, R. (2016). meta-analysis of inquiry-based learning: effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366.
Article
Google Scholar
Leuchter, M., Saalbach, H., & Hardy, I. (2014). Designing science learning in the first years of schooling. An intervention study with sequenced learning material on the topic of ‘floating and sinking’. International Journal of Science Education, 36(10), 1751–1771. https://doi.org/10.1080/09500693.2013.878482.
Article
Google Scholar
Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. https://doi.org/10.1016/j.learninstruc.2013.07.005.
Article
Google Scholar
Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning. Current Topics in Children’s Learning and Cognition. Intechopen. https://doi.org/10.5772/53885.
Article
Google Scholar
National Research Council (NRC) (2012). A framework for K‑12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Google Scholar
Nyberg, K., Osterhaus, C., & Koerber, S. (2020). How to measure scientific reasoning in primary school: a comparison of different test modalities. European Journal of Science and Mathematics Education, 8, 137–144. http://scimath.net/articles/83/833.pdf.
Article
Google Scholar
OECD (2010). “Science Framework” in PISA 2009. Assessment framework: key competencies in reading, mathematics and science. Paris: OECD Publishing. https://doi.org/10.1787/9789264062658-5-en.
Book
Google Scholar
Osterhaus, C., Koerber, S., & Sodian, B. (2017). Scientific thinking in elementary school: children’s social cognition and their epistemological understanding promote experimentation skills. Developmental Psychology, 53(3), 450–462. https://doi.org/10.1037/dev0000260.
Article
Google Scholar
Osterhaus, C., Koerber, S., & Sodian, B. (2020). The Science‑P Reasoning Inventory (SPR-I): measuring emerging scientific-reasoning skills in primary school. International Journal of Science Education, 42(7), 1087–1107. https://doi.org/10.1080/09500693.2020.1748251.
Article
Google Scholar
Pahnke, J., & Pauen, S. (2014). Entwicklung mathematischer und naturwissenschaftlicher Kompetenzen in der frühen Kindheit. In S. Ansari, S. Jeschonek, J. Pahnke & S. Pauen (Eds.), Wissenschaftliche Untersuchungen zur Arbeit der Stiftung „Haus der kleinen Forscher“ (pp. 17–68). Schaffhausen: Schubi Lernmedien.
Google Scholar
Piekny, J., & Maehler, C. (2013). Scientific reasoning in early and middle childhood: the development of domain-general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31(2), 153–179. https://doi.org/10.1111/j.2044-835X.2012.02082.x.
Article
Google Scholar
Pollmeier, J., Tröbst, S., Hardy, I., Möller, K., Kleickmann, T., Jurecka, A., & Schwippert, K. (2017). Science‑P I: Modeling conceptual understanding in primary school. In D. Leutner, J. Fleischer, J. Grünkorn & E. Klieme (Eds.), Competence assessment in education. Methodology of educational measurement and assessment (pp. 9–17). Berlin, Heidelberg, New York: Springer. https://doi.org/10.1007/978-3-319-50030-0_2.
Chapter
Google Scholar
Reuter, T., & Leuchter, M. (2021). Children’s concepts of gears and their promotion through play. Journal of Research in Science Teaching, 58, 69–94. https://doi.org/10.1002/tea.21647.
Article
Google Scholar
Samarapungavan, A., Mantzicopoulos, P., Patrick, H., & French, B. (2009). The development and validation of the science learning assessment (SLA): a measure of kindergarten science learning. Journal of Advanced Academics, 20(3), 502–535. https://doi.org/10.1177/1932202X0902000306.
Article
Google Scholar
van Schaik, J. E., Slim, T., Franse, R. K., & Raijmakers, M. E. (2020). Hands-on exploration of cubes’ floating and sinking benefits children’s subsequent buoyancy predictions. Frontiers in Psychology, 11, 1665. https://doi.org/10.3389/fpsyg.2020.01665.
Article
Google Scholar
Schwichow, M., Osterhaus, C., & Edelsbrunner, P. A. (2020). The relation between the control-of-variables strategy and content knowledge in physics in secondary school. Contemporary Educational Psychology, 63, 101923. https://doi.org/10.1016/j.cedpsych.2020.101923.
Article
Google Scholar
Sobel, D. M., Letourneau, S. M., Legare, C. H., & Callanan, M. (2020). Relations between parent–child interaction and children’s engagement and learning at a museum exhibit about electric circuits. Developmental Science. https://doi.org/10.1111/desc.13057.
Article
Google Scholar
Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753–766. https://doi.org/10.1111/j.1467-8624.1991.tb01567.x.
Article
Google Scholar
Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28, 761–784. https://doi.org/10.1002/tea.3660280905.
Article
Google Scholar
Steffensky, M., Lankes, E. M., Carstensen, C. H., & Nölke, C. (2012). Alltagssituationen und Experimente: Was sind geeignete naturwissenschaftliche Lerngelegenheiten für Kindergartenkinder? Zeitschrift für Erziehungswissenschaft, 15(1), 37–54. https://doi.org/10.1007/s11618-012-0262-3.
Article
Google Scholar
Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22, 447–467. https://doi.org/10.1080/095006900289723.
Article
Google Scholar
Vosniadou, S. (2009). International handbook of research on conceptual change. London: Routledge.
Book
Google Scholar
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: a study of conceptual change in childhood. Cognitive Psychology, 24, 535–585. https://doi.org/10.1016/0010-0285(92)90018-W.
Article
Google Scholar
Weber, A. M., Reuter, T., & Leuchter, M. (2020). The impact of a construction play on 5‑to 6‑year-old children’s reasoning about stability. Frontiers in Psychology, 11, 1737. https://doi.org/10.3389/fpsyg.2020.01737.
Article
Google Scholar
Weinstock, M., Israel, V., Cohen, H. F., Tabak, I., & Harari, Y. (2020). Young schoolchildren’s epistemic development: a longitudinal qualitative study. Frontiers in Psychology, 11, 1475. https://doi.org/10.3389/fpsyg.2020.01475.
Article
Google Scholar
Weisberg, D. S., Choi, E., & Sobel, D. M. (2020). Of blickets, butterflies, and baby dinosaurs: children’s diagnostic reasoning across domains. Frontiers in Psychology, 11, 2210. https://doi.org/10.3389/fpsyg.2020.02210.
Article
Google Scholar
Wilkening, F., & Cacchione, T. (2011). Children’s intuitive physics. In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development (pp. 473–496). Hoboken: Wiley-Blackwell.
Google Scholar
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001.
Article
Google Scholar