Skip to main content

Graphical metrics for analyzing district maps

Abstract

For the past several decades, political scientists have sought to understand the impact of legislative redistricting and gerrymandering on a variety of outcomes. However, traditional metrics such as compactness scores and newer metrics such as aggregated simulations impose very strong assumptions that make their use difficult. In this study, we propose a new graphical framework for analyzing districts that relaxes current assumptions while allowing analysts to focus on the choices that redistricting parties may potentially make. We then leverage the newest advances in district simulation algorithms to extend this framework to propose four new metrics. These new metrics are Edge-Cut Growth (ECG), Excess Edge (EE), and Edge per District Gain (EDG), and Internal Boundary Growth (IBG). These new metrics are then compared to several existing metrics, allowing us to test the attributes that our approach is similar to. In doing so, we demonstrate that the four new metrics are best seen as theoretical and technical advances on current metrics that focus on district geometry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Abromowitz, A. I., Brad, A., & Matthew, G. (2006). Incumbency, redistricting, and the decline of competition in U.S. House Elections. The Journal of Politics, 68(1), 75. https://doi.org/10.1111/j.1468-2508.2006.00371.x.

    Article  Google Scholar 

  2. 2.

    Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2), 129–148. https://doi.org/10.1037/1082-989X.8.2.129.

    Article  Google Scholar 

  3. 3.

    Bernstein, M., & Duchin, M. (2017). A formula goes to court: partisan gerrymandering and the efficiency gap. Notices of the American Mathematical Society, 64(09), 1020–1024. https://doi.org/10.1090/noti1573.

    Article  Google Scholar 

  4. 4.

    Born, R. (1985). Partisan intentions and election day realities in the congressional redistricting process. American Political Science Review, 79(2), 305–319.

    Article  Google Scholar 

  5. 5.

    Browning, R. X., & King, G. (1987). Democratic representation and partisan bias in congressional elections. American Political Science Review, 81(4), 1251–1273.

    Article  Google Scholar 

  6. 6.

    Bullock, C. S. (1975). Redistricting and congressional stability, 1962–72. Journal of Politics, 37(2), 8.

    Article  Google Scholar 

  7. 7.

    Cain, B. E. (1985). Assessing the partisan effects of redistricting. The American Political Science Review, 79(2), 320. https://doi.org/10.2307/1956652.

    Article  Google Scholar 

  8. 8.

    Carson, J. L., Crespin, M. H., Finocchiaro, C. J., & Rohde, D. W. (2007). Redistricting and party polarization in the U.S. House of Representatives. American Politics Research, 35(6), 878–904.

    Article  Google Scholar 

  9. 9.

    Chen, J., & Cottrell, D. (2016). evaluating partisan gains from congressional gerrymandering: Using computer simulations to estimate the effect of gerrymandering in the U.S. House. Electoral Studies, 44(December), 329–340. https://doi.org/10.1016/j.electstud.2016.06.014.

    Article  Google Scholar 

  10. 10.

    Chen, J., & Rodden, J. (2013). Unintentional gerrymandering: Political geography and electoral bias in legislatures. Quarterly Journal of Political Science, 8(3), 239–269.

  11. 11.

    Cirincione, C., Darling, T. A., & O’Rourke, T. G. (2000). Assessing South Carolina’s 1990s congressional districting. Political Geography, 19(2), 189–211. https://doi.org/10.1016/S0962-6298(99)00047-5.

    Article  Google Scholar 

  12. 12.

    Clark, J. T., Dube, M. P., & Powell, R. J. (2020). Stemming the tide: The impact of redistricting on the 2018 midterm election. In The Unforseen Impacts of the 2018 Midterms. Palgrave Macmillan.

  13. 13.

    Dube, M. P., Egenhofer, M. J., Barrett, J. V., & Simpson, N. J. (2019). Beyond the digital Jordan curve: Unconstrained simple pixel-based raster relations. Journal of Computer Languages, 54, 100906.

    Article  Google Scholar 

  14. 14.

    Dube, M. P., Egenhofer, M. J., Lewis, J., Stephen, S., Plummer, M. (2015). Swiss Canton regions: A model for complex objects in geographic partitions. In Proceedings of the international conference on spatial information theory (pp. 309–30). Cham, Switzerland: Spring.

  15. 15.

    Duchin, M., Tenner, B. E. (2018a). Discrete geometry for electoral geography. arXiv:1808.05860 [Physics], August. http://arxiv.org/abs/1808.05860.

  16. 16.

    Duchin, M., Tenner, B. E. (2018b). Discrete geometry for electoral geography. arXiv:1808.05860 [Physics], August. http://arxiv.org/abs/1808.05860.

  17. 17.

    Edwards, J. M. (1971). The Gerrymander and ‘One Man, One Vote.’ New York University Law Review, 46(8), 79–99.

    Google Scholar 

  18. 18.

    Erikson, R. S. (1972). Malapportionment, gerrymandering, and party fortunes in congressional elections. The American Political Science Review, 66(4), 1234. https://doi.org/10.2307/1957176.

    Article  Google Scholar 

  19. 19.

    Erikson, R. S. (1978). Constituency Opinion and Congressional Behavior: A Reexamination of the Miller-Stokes Representation Data. American Journal of Political Science, 22(3), 511. https://doi.org/10.2307/2110459.

    Article  Google Scholar 

  20. 20.

    Esri. (2020). Polygon Neighbors—Help | Documentation. https://pro.arcgis.com/en/pro-app/tool-reference/analysis/polygon-neighbors.htm.

  21. 21.

    Ferejohn, J. A. (1977). On the decline of competition in congressional elections. The American Political Science Review, 1, 166. https://doi.org/10.2307/1956960.

    Article  Google Scholar 

  22. 22.

    Fifield, B., Imai, K., Kawahara, J., & Kenny, C. T. (2020). The essential role of empirical validation in legislative redistricting simulation. Statistics and Public Policy, 7(1), 52–68.

  23. 23.

    Fowler, L., Douglass, S. R., Clark, W. D. (1980). The electoral effects of house committee assignments. Journal of Politics, 42 (1). https://eds.a.ebscohost.com/eds/detail/detail?vid=3&sid=9117b19d-9c84-4bef-b111-5c299e9612e2%40sessionmgr4006&bdata=JnNpdGU9ZWRzLWxpdmUmc2NvcGU9c2l0ZQ%3d%3d#AN=edsjsr.2130030&db=edsjsr.

  24. 24.

    Gelman, A., & King, G. (1990). Estimating incumbency advantage without bias. American Journal of Political Science, 34(4), 1142. https://doi.org/10.2307/2111475.

    Article  Google Scholar 

  25. 25.

    Guttman, L. (1938). A note on the derivation of formulae for multiple and partial correlation. The Annals of Mathematical Statistics, 9(4), 305–308.

    Article  Google Scholar 

  26. 26.

    Hein, J. L. (2003). Discrete mathematics. Jones and Bartlett.

    Google Scholar 

  27. 27.

    Herschlag, G., Ravier, R., Mattingly, J. C. (2017). Evaluating Partisan Gerrymandering in Wisconsin. arXiv:1709.01596 [Physics, Stat], September. http://arxiv.org/abs/1709.01596.

  28. 28.

    Hopkins, D. J. (2018). The increasingly United States. Chicago: University of Chicago Press.

    Book  Google Scholar 

  29. 29.

    Iyengar, S., Sood, G., & Lelkes, Y. (2012). Affect, not ideology. Public Opinion Quarterly, 76(3), 405–431. https://doi.org/10.1093/poq/nfs038.

    Article  Google Scholar 

  30. 30.

    Iyengar, S., & Westwood, S. J. (2015). Fear and loathing across party lines: New evidence on group polarization: FEAR AND LOATHING ACROSS PARTY LINES. American Journal of Political Science, 59(3), 690–707. https://doi.org/10.1111/ajps.12152.

    Article  Google Scholar 

  31. 31.

    Jacobson, G. (2017). Partisanship, money, and competition: Elections and the transformation of congress since the 1970s. In L. Dodd (Ed.), Congress reconsidered (11th ed.). CQ Press.

    Google Scholar 

  32. 32.

    Jacobson, G. C. (1989). Strategic politicians and the dynamics of U.S. House Elections, 1946–86. American Political Science Review, 83(3), 773–793.

    Article  Google Scholar 

  33. 33.

    Karypis, G., & Kumar, V. (1999). Parallel multilevel K-way partitioning scheme for irregular graphs. SIAM Review, 41(2), 278.

    Article  Google Scholar 

  34. 34.

    Lunday, B. J. (2014). A metric to identify gerrymandering. International Journal of Society Systems Science, 6(3), 285–304.

    Article  Google Scholar 

  35. 35.

    Magleby, D. B., & Mosesson, D. B. (2018). A new approach for developing neutral redistricting plans. Political Analysis, 26(2), 147–167. https://doi.org/10.1017/pan.2017.37.

    Article  Google Scholar 

  36. 36.

    Mason, L. (2015). ‘I Disrespectfully Agree’: The differential effects of partisan sorting on social and issue polarization: PARTISAN SORTING AND POLARIZATION. American Journal of Political Science, 59(1), 128–145. https://doi.org/10.1111/ajps.12089.

    Article  Google Scholar 

  37. 37.

    Mattingly, J. C., Vaughn, C. (2014). Redistricting and the will of the people. Duke University. https://arxiv.org/abs/1410.8796.

  38. 38.

    Mayhew, D. R. (1971). Congressional representation: Theory and practice in drawing the districts. In Reapportionment in the 1970’s. University of California Press.

  39. 39.

    Mayhew, D. R. (1974). Congressional elections: The case of the vanishing marginals. Polity, 6(3), 295–317. https://doi.org/10.2307/3233931.

    Article  Google Scholar 

  40. 40.

    McCarty, N., Poole, K. T., & Rosenthal, H. (2009). Does gerrymandering cause polarization? American Journal of Political Science, 53(3), 15.

    Article  Google Scholar 

  41. 41.

    McGlone, D., & Cheetham, R. (2009). Redrawing the map on redistricting 2010: A national study. Azevea.

    Google Scholar 

  42. 42.

    Niemi, R. G., Grofman, B., Carlucci, C., & Hofeller, T. (1990). Measuring compactness and the role of a compactness standard in a test for partisan and racial gerrymandering. The Journal of Politics, 52(4), 1155–1181. https://doi.org/10.2307/2131686.

    Article  Google Scholar 

  43. 43.

    Polsby, D. D., & Popper, R. D. (1991). The third criterion: Compactness as a procedural safeguard against partisan gerrymandering. Yale Law & Policy Review, 9(2), 301.

    Google Scholar 

  44. 44.

    Powell, R. J., Clark, J. T., & Dube, M. P. (2020). Partisan gerrymandering, clustering, or both? A new approach to a persistent question. Election Law Journal: Rules, Politics, and Policy, 19(1), 79–100.

  45. 45.

    Reock, E. C. (1961). A note: Measuring compactness as a requirement of legislative apportionment. Midwest Journal of Political Science, 7(1), 70–74.

    Article  Google Scholar 

  46. 46.

    Rodden, J. (2009). Precinct-level election data project. https://web.stanford.edu/~jrodden/jrhome_files/electiondata.htm.

  47. 47.

    Schwartzberg, J. E. (1965). Reapportionment, gerrymanders, and the notion of compactness. Minnesota Law Review, no. Issue 3: 443.

  48. 48.

    Seabrook, N. R. (2010). The limits of partisan gerrymandering: Looking ahead to the 2010 congressional redistricting cycle. The Forum. https://doi.org/10.2202/1540-8884.1327.

    Article  Google Scholar 

  49. 49.

    Smith, B. (2001). Fiat objects. Topoi, 20(2), 131–148.

    Article  Google Scholar 

  50. 50.

    Squire, P. (1995). The partisan consequences of congressional redistricting—Peverill Squire. American Politics Research, 23(2), 229–240.

    Article  Google Scholar 

  51. 51.

    Stephanopoulos, N., & McGhee, E. (2015). Partisan gerrymandering and the efficiency gap. Univ Chicago Law Rev, 82, 831.

    Google Scholar 

  52. 52.

    Swain, J. W., Borelli, S. A., & Reed, B. C. (1998). Partisan consequences of the post-1990 redistricting for the U. S. House of Representatives. Political Research Quarterly, 51(4), 24.

    Google Scholar 

  53. 53.

    Taylor, P. J. (1973). A new shape measure for evaluating electoral district patterns. American Political Science Review, 67(9), 47–50.

    Google Scholar 

  54. 54.

    Tobler, W. (1970). Movie simulating urban growth in the detroit. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  55. 55.

    Tobler, W. (1999). Linear pycnophylactic reallocation comment on a paper by D. Martin. International Journal of Geographical Information Science, 13(1), 85–90. https://doi.org/10.1080/136588199241472.

    Article  Google Scholar 

  56. 56.

    Topdemir, S. (2019). A mathematical model and application on the prevention of gerrymandering. Sabanci University.

  57. 57.

    Tufte, E. R. (1973). The relationship between seats and votes in two-party systems. The American Political Science Review, 67(2), 540. https://doi.org/10.2307/1958782.

    Article  Google Scholar 

  58. 58.

    U.S. Census Bureau. (2019). TIGER/Line Shapefiles. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.

  59. 59.

    Warrington, G. S. (2018). Quantifying gerrymandering using the vote distribution. Election Law Journal, 17(1), 39–57.

    Article  Google Scholar 

  60. 60.

    Wold, S., Esbensen, K., & Geladi, P. (1986). Principal component analysis—ScienceDirect. Chemometrics and Intelligient Laboratory Systems, 2(1–3), 37–52.

    Google Scholar 

  61. 61.

    Young, H. P. (1988). Measuring the compactness of legislative districts. Legislative Studies Quarterly, 13(1), 105–115.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesse T. Clark.

Ethics declarations

Conflicts of interest

No authors have conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (R 2 KB)

Supplementary file2 (R 2 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dube, M.P., Clark, J.T. & Powell, R.J. Graphical metrics for analyzing district maps. J Comput Soc Sc (2021). https://doi.org/10.1007/s42001-021-00131-x

Download citation

Keywords

  • Gerrymandering
  • Redistricting
  • GIS
  • Graph theory