Skip to main content
Log in

Colorado in context: Congressional redistricting and competing fairness criteria in Colorado

  • Research Article
  • Published:
Journal of Computational Social Science Aims and scope Submit manuscript


In this paper, we apply techniques of ensemble analysis to understand the political baseline for Congressional representation in Colorado. We generate a large random sample of reasonable redistricting plans and determine the partisan balance of each district using returns from state-wide elections in 2018, and analyze the 2011/2012 enacted districts in this context. Colorado recently adopted a new framework for redistricting, creating an independent commission to draw district boundaries, prohibiting partisan bias and incumbency considerations, requiring that political boundaries (such as counties) be preserved as much as possible, and also requiring that mapmakers maximize the number of competitive districts. We investigate the relationships between partisan outcomes, number of counties which are split, and number of competitive districts in a plan. This paper also features two novel improvements in methodology—a more rigorous statistical framework for understanding necessary sample size, and a weighted-graph method for generating random plans which split approximately as few counties as acceptable human-drawn maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others


  1. We note that [12] also examines Colorado’s current legal definition of competitiveness, that is, “having a reasonable potential for the party affiliation of the district’s representative to change at least once between federal decennial censuses” [4] using probability, and finds that a literal reading of this law might be that “any district in which both parties have at least a 13% projected chance of winning might match the Colorado law, since (1–0.13)\(^5 \approx 0.5\)” [12].


  1. Baker v. Carr (1962). 369 U.S. 186.

  2. Rucho v. Common Cause (2019). 588 U.S.

  3. An act to enforce the fifteenth amendment to the Constitution of the United States and for other purposes, August 6, 1965, Enrolled Acts and Resolutions of Congress, 1789-; General Records of the United States Government; Record Group 11; National Archives.

  4. Congressional redistricting, November 6, 2018, Senate Concurrent Resolution 18-004, Amendment Y to Colorado Constitution.

  5. Legislative redistricting, November 6, 2018, Senate Concurrent Resolution 18-005, Amendment Z to Colorado Constitution.

  6. Barry, J. (2020). email communication, July 10.

  7. US Census Bureau. (2010). 2010 census.

  8. Chen, J., & Rodden, J. (2013). Unintentional Gerrymandering: Political geography and electoral bias in legislatures. Quarterly Journal of Political Science, 8(3), 239–269.

    Article  Google Scholar 

  9. Chikina, M., Frieze, A., & Pegden, W. (2017). Assessing significance in a Markov chain without mixing. Proceedings of the National Academy of Sciences, 114(11), 2860–2864.

    Article  Google Scholar 

  10. Cirincione, C., Darling, T. A., & O’Rourke, T. G. (2000). Assessing South Carolina’s 1990s congressional districting. Political Geography, 19, 189–211.

    Article  Google Scholar 

  11. DeFord, D., Dhamankar, N., Duchin, M., Gupta, V., McPike, M., Schoenbach, G., & Sim, K.W. (2021). Implementing partisan symmetry: Problems and paradoxes. Political Analysis (to appear)

  12. DeFord, D., Duchin, M. & Solomon, J. (2020). A Computational Approach to Measuring Vote Elasticity and Competitiveness. Statistics and Public Policy, 7(1), 69–86.

  13. DeFord, D., Duchin, M., & Solomon, J. (2021). Recombination: A Family of Markov Chains for Redistricting. Harvard Data Science Review.

    Article  Google Scholar 

  14. Diaconis, P. (2009). The Markov chain Monte Carlo revolution. Bulletin of the American Mathematical Society (N.S.), 46(2), 179–205.

    Article  Google Scholar 

  15. Dimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the Kolmogorov-Smirnov distribution when the underlying CDF is purely discrete, mixed, or continuous. Journal of Statistical Software, 95, 1–42.

    Article  Google Scholar 

  16. Duchin, M., Gladkova, T., Henninger-Voss, E., Klingensmith, B., Newman, H., & Wheelen, H. (2018). Locating the Representational Baseline: Republicans in Massachusetts, arXiv e-prints, arXiv:1810.09051

  17. Frank, J. (2019). Colorado hits a new milestone with unaffiliated voters and busts the myth about its even partisan split, Colorado Sun.

  18. Herschlag, G., Kang, H. S., Luo, J., Graves, C. V., Bangia, S., Ravier, R., & Mattingly, J. C. (2020). Quantifying Gerrymandering in North Carolina. Statistics and Public Policy, 7, 30–38.

    Article  Google Scholar 

  19. Hobbs, G. (2002). In re reapportionment of the Colorado general assembly. Colorado Supreme Court, 45, P.3d 1237.

  20. Hoover, T. (2011). Judge rules in favor of Democratic map in Colorado redistricting, The Denver Post.

  21. Hyatt, R. (2011). Moreno et al. v. Gessler, Denver District Court Case No. 11CV3461.

  22. Liller, D. (2020). The impact of competitive congressional districts on compactness and political subdivision splits in Colorado, Master’s Thesis, submitted to the Department of Geography at University of Colorado Colorado Springs.

  23. Liu, Y. Y., Tam Cho, W. K., & Wang, S. (2016). PEAR: A massively parallel evolutionary computation approach for political redistricting optimization and analysis. Swarm and Evolutionary Computation, 30, 78–92.

    Article  Google Scholar 

  24. Loevy, R. D. (2011). Confessions of a Reapportionment Commissioner—2011. Accessed June 2020

  25. Mattingly, J. C., & Vaughn, C. (2014). Redistricting and the Will of the People, arXiv e-prints, arXiv:1410.8796

  26. Metric Geometry and Gerrymandering Group. (2018). Comparison of Districting Plans for the Virginia House of Delegates, Technical report, Accessed May 2020

  27. Najt, L., DeFord, D., & Solomon, J. (2019). Complexity and geometry of sampling connected graph partitions, arXiv e-prints, arXiv:1908.08881

  28. National Conference of State Legislatures, Redistricting and the Supreme Court: The Most Significant Cases, technical report, 2019. Accessed June 2019

  29. Colorado Secretary of State, Election Results Archives: 2018 General Election precinct-level results in Excel format (2020).

  30. Smirnov, N. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Moscow University Mathematics Bulletin, 2(2), 3–14 (English).

    Google Scholar 

Download references


We would like to thank the MGGG Redistricting Lab for introducing us to this area and for copious assistance; University of Nebraska graduate student Austin Eide for invaluable assistance in getting started; Todd Bleess of the Colorado State Demography Office for a great starting map; Geographers Dr. Rebecca Theobald and Dwayne Liller; student researchers Edgar Santos Vega, Jose Monge Castro, and Kadin Mangalik; and generous Colorado College GIS experts Matt Cooney and Francis Russell.


J. Clelland was partially supported by a Collaboration Grant for Mathematicians from the Simons Foundation. H. Colgate was supported by the Colorado College Summer Collaborative Research Experience. D. DeFord was partially supported by a Prof. Amar G. Bose Research Grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jeanne Clelland.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clelland, J., Colgate, H., DeFord, D. et al. Colorado in context: Congressional redistricting and competing fairness criteria in Colorado. J Comput Soc Sc 5, 189–226 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: