Exponential random graph models for the Japanese bipartite network of banks and firms

Abstract

We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well-known and simple models of the exponential random graph is the Bernoulli model which shows that the links in the bank–firm network are not independent from each other. Another popular exponential random graph model, the two-star model, indicates that the bank–firms are in a state where the macroscopic variables of the system can show large fluctuations. Moreover, the presence of high fluctuations reflects a fragile nature of the bank–firm network.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    x and \(x'\) are network states at simulation steps t and t+1, respectively.

References

  1. 1.

    Park, J., & Newman, M. E. (2004). Statistical mechanics of networks. Physical Review E, 70, 066117.

    Article  Google Scholar 

  2. 2.

    Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  Google Scholar 

  3. 3.

    Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76, 33–50.

    Article  Google Scholar 

  4. 4.

    Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological) 36(2),192–236.

    Article  Google Scholar 

  5. 5.

    Park, J., & Newman, M. E. (2004). Solution of the two-star model of a network. Physical Review E, 70, 066146.

    Article  Google Scholar 

  6. 6.

    Annibale, A., & Courtney, O. T. (2015). The two-star model: exact solution in the sparse regime and condensation transition. Journal of Physics A: Mathematical and Theoretical, 48, 365001.

    Article  Google Scholar 

  7. 7.

    Strauss, D. (1986). On a general class of models for interaction. SIAM Review, 28, 513–527.

    Article  Google Scholar 

  8. 8.

    Park, J., & Newman, M. (2005). Solution for the properties of a clustered network. Physical Review E, 72, 026136.

    Article  Google Scholar 

  9. 9.

    Lusher, D., Koskinen, J., & Robins, G. (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge: Cambridge University Press.

    Google Scholar 

  10. 10.

    Wong, L. H. H., Gygax, A. F., & Wang, P. (2015). Board interlocking network and the design of executive compensation packages. Social Networks, 41, 85–100.

    Article  Google Scholar 

  11. 11.

    Simpson, S. L., Hayasaka, S., & Laurienti, P. J. (2011). Exponential random graph modeling for complex brain networks. PloS One, 6, e20039.

    Article  Google Scholar 

  12. 12.

    Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of statistical software, 24(3), nihpa54860.

    Article  Google Scholar 

  13. 13.

    Ripley, R.M., Snijders, T.A., & Preciado, P. (2011). Manual for siena version 4.0. Oxford: University of Oxford

  14. 14.

    Wang, P., Pattison, P., & Robins, G. (2013). Exponential random graph model specifications for bipartite networksa dependence hierarchy. Social Networks, 35, 211–222.

    Article  Google Scholar 

  15. 15.

    Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1), 97–109.

    Article  Google Scholar 

  16. 16.

    Snijders, T. A. (2002). Markov chain monte carlo estimation of exponential random graph models. Journal of Social Structure, 3, 1–40.

    Google Scholar 

  17. 17.

    Solomonoff, R., & Rapoport, A. (1951). Connectivity of random nets. The Bulletin of Mathematical Biophysics, 13, 107–117.

    Article  Google Scholar 

  18. 18.

    Erdos, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–60.

    Google Scholar 

  19. 19.

    Coolen, A. C., Annibale, A., & Roberts, E. (2017). Generating random networks and graphs. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chakraborty.

Additional information

This research was supported by MEXT as Exploratory Challenges on Post-K computer (Studies of Multi-level Spatiotemporal Simulation of Socioeconomic Phenomena, Macroeconomic Simulations). This research used computational resources of the K computer provided by the RIKEN Center for Computational Science through the HPCI System Research project (Project ID: hp180177).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Krichene, H., Inoue, H. et al. Exponential random graph models for the Japanese bipartite network of banks and firms. J Comput Soc Sc 2, 3–13 (2019). https://doi.org/10.1007/s42001-019-00034-y

Download citation

Keywords

  • Exponential random graph
  • Bipartite network
  • Bernoulli model
  • Two-star model