Skip to main content
Log in

Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

The neuroprotective actions of the ovarian hormone 17β-estradiol (E2) against different brain lesions have been constantly confirmed in a variety of models including kainic acid (KA) lesions. Similarly, the pituitary hormone prolactin (PRL), traditionally associated with lactogenesis, has recently been linked to a large diversity of functions, including neurogenesis, neuroprotection, and cognitive processes. While the mechanisms of actions of E2 as regards its neuroprotective and behavioral effects have been extensively explored, the molecular mechanisms of PRL related to these roles remain under investigation. The current study aimed to investigate whether the simultaneous administration of PRL and a low dose of E2 prevents the KA-induced cognitive deficit and if this action is associated with changes in hippocampal neuronal density.

Methods

Ovariectomized (OVX) rats were treated with saline, PRL, and/or E2 in the presence or absence of KA. Neuroprotection was assessed by Nissl staining and neuron counting. Memory was evaluated with the novel object recognition test (NOR).

Results

On their own, both PRL and E2 prevented short- and long-term memory deficits in lesioned animals and exerted neuroprotection against KA-induced excitotoxicity in the hippocampus. Interestingly, the combined hormonal treatment was superior to either of the treatments administered alone as regards improving both memory and neuronal survival.

Conclusion

Taken together, these results point to a synergic effect of E2 and PRL in the hippocampus to produce their behavioral, proliferative, and neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pan Q, Guo K, Xue M, Tu Q (2020) Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem Int 135:104685. https://doi.org/10.1016/j.neuint.2020.104685

    Article  CAS  PubMed  Google Scholar 

  2. Finney CA, Shvetcov A, Westbrook RF et al (2020) The role of hippocampal estradiol in synaptic plasticity and memory: a systematic review. Front Neuroendocrinol 56:100818. https://doi.org/10.1016/j.yfrne.2019.100818

    Article  CAS  PubMed  Google Scholar 

  3. Pompili A, Iorio C, Gasbarri A (2020) Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 80:117–128. https://doi.org/10.21307/ane-2020-012

    Article  PubMed  Google Scholar 

  4. Ortiz-Pérez A, Espinosa-Raya J, Picazo O (2016) An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 17:15–25. https://doi.org/10.1007/s10339-015-0746-1

    Article  PubMed  Google Scholar 

  5. Koebele SV, Mennenga SE, Poisson ML et al (2020) Characterizing the effects of tonic 17β-estradiol administration on spatial learning and memory in the follicle-deplete middle-aged female rat. Horm Behav 126:104854. https://doi.org/10.1016/j.yhbeh.2020.104854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ et al (2022) Highlights regarding prolactin in the dentate gyrus and hippocampus. pp 479–505

  7. Taxier LR, Gross KS, Frick KM (2020) Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 21:535–550. https://doi.org/10.1038/s41583-020-0362-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao S, Song J, Gao J et al (2018) Cognitive function and serum hormone levels are associated with gray matter volume decline in female patients with prolactinomas. Front Neurol 8. https://doi.org/10.3389/fneur.2017.00742

  9. Moreno-Ruiz B, Mellado S, Zamora-Moratalla A et al (2021) Increase in serum prolactin levels in females improves the performance of spatial learning by promoting changes in the circuital dynamics of the hippocampus. Psychoneuroendocrinology 124. https://doi.org/10.1016/j.psyneuen.2020.105048

  10. Leem YH, Park JS, Chang H et al (2019) Exercise prevents memory consolidation defects Via enhancing prolactin responsiveness of CA1 neurons in mice under chronic stress. Mol Neurobiol 56. https://doi.org/10.1007/s12035-019-1560-z

  11. Torner L, Tinajero E, Lajud N et al (2013) Hyperprolactinemia impairs object recognition without altering spatial learning in male rats. Behav Brain Res 252:32–39. https://doi.org/10.1016/j.bbr.2013.05.031

    Article  CAS  PubMed  Google Scholar 

  12. Walker TL, Vukovic J, Koudijs MM et al (2012) Prolactin stimulates Precursor cells in the adult mouse Hippocampus. PLoS ONE 7:e44371. https://doi.org/10.1371/journal.pone.0044371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reyes-Mendoza J, Morales T (2020) Prolactin treatment reduces kainic acid-induced gliosis in the hippocampus of ovariectomized female rats. Brain Res 1746:147014. https://doi.org/10.1016/j.brainres.2020.147014

    Article  CAS  PubMed  Google Scholar 

  14. Castanho TC, Moreira PS, Portugal-Nunes C et al (2014) The role of sex and sex-related hormones in cognition, mood and well-being in older men and women. Biol Psychol 103:158–166. https://doi.org/10.1016/j.biopsycho.2014.08.015

    Article  PubMed  Google Scholar 

  15. Montalvo I, Llorens M, Caparrós L et al (2018) Improvement in cognitive abilities following cabergoline treatment in patients with a prolactin-secreting pituitary adenoma. Int Clin Psychopharmacol 33:98–102. https://doi.org/10.1097/YIC.0000000000000199

    Article  PubMed  Google Scholar 

  16. Sihra TS, Flores G, Rodríguez-Moreno A (2014) Kainate receptors. Neuroscientist 20:29–43. https://doi.org/10.1177/1073858413478196

    Article  CAS  PubMed  Google Scholar 

  17. Tejadilla D, Cerbón M, Morales T (2010) Prolactin reduces the damaging effects of excitotoxicity in the dorsal hippocampus of the female rat independently of ovarian hormones. Neuroscience 169:1178–1185. https://doi.org/10.1016/j.neuroscience.2010.05.074

    Article  CAS  PubMed  Google Scholar 

  18. Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54:99–105. https://doi.org/10.1016/j.vascn.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  19. Taglialatela G, Hogan D, Zhang W-R, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99. https://doi.org/10.1016/j.bbr.2008.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lueptow LM (2017) Novel object Recognition Test for the investigation of learning and memory in mice. J Visualized Experiments. https://doi.org/10.3791/55718

    Article  Google Scholar 

  21. George Paxinos and Charles Watson (1986) The Rat Brain In Stereotaxic Coordinates, Second Edition. Academic Press

  22. Hasegawa Y, Hojo Y, Kojima H et al (2015) Estradiol rapidly modulates synaptic plasticity of hippocampal neurons: involvement of kinase networks. Brain Res 1621:147–161. https://doi.org/10.1016/j.brainres.2014.12.056

    Article  CAS  PubMed  Google Scholar 

  23. Rong W, Wang J, Liu X et al (2012) 17β-Estradiol attenuates neural cell apoptosis through inhibition of JNK Phosphorylation in SCI Rats and Excitotoxicity Induced by Glutamate in Vitro. Int J Neurosci 122:381–387. https://doi.org/10.3109/00207454.2012.668726

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Chavez V, Moran J, Molina-Salinas G et al (2021) Participation of glutamatergic ionotropic receptors in excitotoxicity: the neuroprotective role of Prolactin. Neuroscience 461:180–193. https://doi.org/10.1016/j.neuroscience.2021.02.027

    Article  CAS  PubMed  Google Scholar 

  25. Hojo Y, Munetomo A, Mukai H et al (2015) Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: involvement of kinase networks. Horm Behav 74:149–156. https://doi.org/10.1016/j.yhbeh.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  26. Tuscher JJ, Fortress AM, Kim J, Frick KM (2015) Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res 285:140–157. https://doi.org/10.1016/j.bbr.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  27. Cabrera-Reyes EA, Vanoye–Carlo A, Rodríguez-Dorantes M et al (2019) Transcriptomic analysis reveals new hippocampal gene networks induced by prolactin. Sci Rep 9:13765. https://doi.org/10.1038/s41598-019-50228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamora-Moratalla A, Martín ED (2021) Prolactin enhances hippocampal synaptic plasticity in female mice of reproductive age. Hippocampus 31:281–293. https://doi.org/10.1002/hipo.23288

    Article  CAS  PubMed  Google Scholar 

  29. Love G, Torrey N, McNamara I et al (2005) Maternal experience produces long-lasting behavioral modifications in the rat. Behav Neurosci 119:1084–1096. https://doi.org/10.1037/0735-7044.119.4.1084

    Article  PubMed  Google Scholar 

  30. Pawluski JL, Walker SK, Galea LAM (2006) Reproductive experience differentially affects spatial reference and working memory performance in the mother. Horm Behav 49:143–149. https://doi.org/10.1016/j.yhbeh.2005.05.016

    Article  PubMed  Google Scholar 

  31. Bridges RS (2016) Long-term alterations in neural and endocrine processes induced by motherhood in mammals. Horm Behav 77. https://doi.org/10.1016/j.yhbeh.2015.09.001

  32. Hussain D, Hoehne A, Woodside B, Brake WG (2013) Reproductive experience modifies the effects of estradiol on learning and memory bias in female rats. Horm Behav 63. https://doi.org/10.1016/j.yhbeh.2012.11.011

  33. Flores-Vivaldo YM, Camacho‐Abrego I, Picazo O, Flores G (2019) Pregnancies alters spine number in cortical and subcortical limbic brain regions of old rats. Synapse 73:e22100. https://doi.org/10.1002/syn.22100

    Article  CAS  PubMed  Google Scholar 

  34. Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F et al (2017) Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 71:e21991. https://doi.org/10.1002/syn.21991

    Article  CAS  PubMed  Google Scholar 

  35. Duc Nguyen H, Pal Yu B, Hoang NHM et al (2022) Prolactin and its altered action in Alzheimer’s Disease and Parkinson’s Disease. Neuroendocrinology 112:427–445. https://doi.org/10.1159/000517798

    Article  CAS  PubMed  Google Scholar 

  36. Azcoitia I, Barreto GE, Garcia-Segura LM (2019) Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 55:100787. https://doi.org/10.1016/j.yfrne.2019.100787

    Article  CAS  PubMed  Google Scholar 

  37. Lu Y, Sareddy GR, Wang J et al (2020) Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain. J Neurosci 40:7355–7374. https://doi.org/10.1523/JNEUROSCI.0115-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duarte-Guterman P, Yagi S, Chow C, Galea LAM (2015) Hippocampal learning, memory, and neurogenesis: effects of sex and estrogens across the lifespan in adults. Horm Behav 74:37–52. https://doi.org/10.1016/j.yhbeh.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Guo W, Xu L et al (2016) 17 β -Estradiol promotes Schwann Cell Proliferation and differentiation, accelerating early remyelination in a mouse peripheral nerve Injury Model. Biomed Res Int 2016:1–13. https://doi.org/10.1155/2016/7891202

    Article  CAS  Google Scholar 

  40. Hodges TE, Puri TA, Blankers SA et al (2022) Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. pp 129–170

  41. Chamaa F, Darwish B, Arnaout R et al (2022) Sustained activation of the anterior thalamic neurons with low doses of Kainic Acid boosts hippocampal neurogenesis. Cells 11:3413. https://doi.org/10.3390/cells11213413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakurai M, Suzuki H, Tomita N et al (2018) Enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of adult rat following kainic acid-induced status epilepticus. Neuropathology 38:135–143. https://doi.org/10.1111/neup.12445

    Article  CAS  PubMed  Google Scholar 

  43. Dong H, Csernansky CA, Goico B, Csernansky JG (2003) Hippocampal neurogenesis follows Kainic Acid-Induced apoptosis in neonatal rats. J Neurosci 23:1742–1749. https://doi.org/10.1523/JNEUROSCI.23-05-01742.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wallace M, Luine V, Arellanos A, Frankfurt M (2006) Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res 1126:176–182. https://doi.org/10.1016/j.brainres.2006.07.064

    Article  CAS  PubMed  Google Scholar 

  45. Picazo O, Azcoitia I, Garcia-Segura LM (2003) Neuroprotective and neurotoxic effects of estrogens. Brain Res 990:20–27. https://doi.org/10.1016/S0006-8993(03)03380-8

    Article  CAS  PubMed  Google Scholar 

  46. Dubal DB, Wise PM (2001) Neuroprotective effects of Estradiol in Middle-aged female rats. Endocrinology 142:43–48. https://doi.org/10.1210/endo.142.1.7911

    Article  CAS  PubMed  Google Scholar 

  47. Barha CK, Galea LAM (2010) Influence of different estrogens on neuroplasticity and cognition in the hippocampus. Biochimica et Biophysica Acta (BBA). - Gen Subj 1800:1056–1067. https://doi.org/10.1016/j.bbagen.2010.01.006

    Article  CAS  Google Scholar 

  48. Rodríguez-Chávez V, Flores-Soto E, Molina-Salinas G et al (2023) Prolactin reduces the kainic acid-induced increase in intracellular Ca2 + concentration, leading to neuroprotection of hippocampal neurons. Neurosci Lett 810. https://doi.org/10.1016/j.neulet.2023.137344

  49. Molina-Salinas G, Rodríguez-Chávez V, Langley E, Cerbon M (2023) Prolactin-induced neuroprotection against excitotoxicity is mediated via PI3K/AKT and GSK3β/NF-κB in primary cultures of hippocampal neurons. Peptides (NY) 166. https://doi.org/10.1016/j.peptides.2023.171037

  50. Ribeiro MF, Spritzer PM, Barbosa-Coutinho LM et al (1997) Effects of bromocriptine on serum prolactin levels, pituitary weight and immunoreactive prolactin cells in estradiol-treated ovariectomized rats: an experimental model of estrogen-dependent hyperprolactinemia. Braz J Med Biol Res 30. https://doi.org/10.1590/S0100-879X1997000100017

  51. Aquino NSS, Araujo-Lopes R, Henriques PC et al (2017) α-estrogen and progesterone receptors modulate Kisspeptin effects on prolactin: role in estradiol-induced prolactin surge in female rats. Endocrinology 158. https://doi.org/10.1210/en.2016-1855

  52. Torner L, Karg S, Blume A et al (2009) Prolactin prevents chronic stress-Induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 29:1826–1833. https://doi.org/10.1523/JNEUROSCI.3178-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by CONACYT (286446), COFAA, SIP-IPN, and DGAPA PAPIIT UNAM, grant numbers IN224019 to GRR and IN227123, to JPM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel Roldán-Roldán or Ofir Picazo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Research involving human participants and/or animals

All experimental procedures were performed in accordance with the guidelines and standards established by the Ethics Committee of the Faculty of Medicine, UNAM, Mexico City, project registration number FM/DI/046/2018 and by the Internal Committee for Use and Care of Laboratory Animals No. 006/CIC/2018.

Informed consent

Since this research only included animals, this process does not apply.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Torre, K., Cerbón, M.A., Molina-Salinas, G. et al. Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats. Hormones (2024). https://doi.org/10.1007/s42000-024-00551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42000-024-00551-0

Keywords

Navigation