Skip to main content

Advertisement

Log in

The effect of testosterone level on metabolic syndrome: a cross-sectional study

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Background

Metabolic syndrome (MS) may reduce circulating testosterone and, at the same time, low testosterone levels may lead to MS. Thus, identifying problems regarding sex hormones and examining their effects on the pathogenesis of MS is important to prevent serious complications of the condition, such as diabetes or cardiovascular diseases.

Aims

This study aimed to investigate the correlations between MS-related parameters and androgen levels.

Methods

A total of 108 males [median age 48.5 years (min/max = 21/77 years)] were included in the study. Blood pressure and anthropometric measurements (body mass index, waist circumference, hip circumference, thigh circumference, neck circumference, and length of index and ring finger) were performed. Biochemical analysis was assessed. Additionally, total testosterone, free testosterone, and sex hormone binding globulin levels were investigated.

Results

Weak negative correlations were observed between testosterone levels and several anthropometric measures/glucose metabolisms (p < 0.05). The highest correlation was between total testosterone levels and body mass index (rho= −0.390, p < 0.001)

Conclusion

According to our results, controlling weight, one of the preventable risk factors, can have a positive effect on testosterone levels and, therefore, on the cardiovascular system through different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nilsson PM, Tuomilehto J, Rydén L (2019) The metabolic syndrome — what is it and how should it be managed? Eur. J Prev Cardiol 26(2_suppl):33–46. https://doi.org/10.1177/2047487319886404

    Article  Google Scholar 

  2. Wang N, Wang L, Huang C (2021) Association of total testosterone status with bone mineral density in adults aged 40–60 years. J Orthop Surg Res 16(1):612. https://doi.org/10.1186/s13018-021-02714-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelly DM, Jones TH (2013) Testosterone: a metabolic hormone in health and disease. J Endocrinol 217(3):R25–R45. https://doi.org/10.1530/JOE-12-0455

    Article  CAS  PubMed  Google Scholar 

  4. Blaya R, Blaya P, Rhoden L, Rhoden EL (2017) Low testosterone levels and metabolic syndrome in aging male. Curr Pharm Des 23(30):4470–4474. https://doi.org/10.2174/1381612823666170503150955

    Article  CAS  PubMed  Google Scholar 

  5. Defeudis G, Mazzilli R, Gianfrilli D, Lenzi A, Isidori AM (2018) The CATCH checklist to investigate adult-onset hypogonadism. Andrology 6(5):665–679. https://doi.org/10.1111/andr.12506

    Article  CAS  PubMed  Google Scholar 

  6. Defeudis G, Maddaloni E, Rossini G, Di Tommaso AM, Mazzilli R, Di Palma P, Pozzilli P, Napoli N (2022) Glycemic variability in subjects with diabetes and hypogonadism during testosterone replacement treatment: a pilot study. J Clin Med 11(18):5333. https://doi.org/10.3390/jcm11185333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim M, Kyung YS, Ahn TY (2020) Cross-sectional association of metabolic syndrome and its components with serum testosterone levels in a Korean-screened population. World J Mens Health 38(1):85–94. https://doi.org/10.5534/wjmh.190030

    Article  PubMed  Google Scholar 

  8. Akishita M, Fukai S, Hashimoto M, Kameyama Y, Nomura K, Nakamura T, Ogawa S, Iijima K, Eto M, Ouchi Y (2010) Association of low testosterone with metabolic syndrome and its components in middle-aged Japanese men. Hypertens Res 33(6):587–591. https://doi.org/10.1038/hr.2010.43

    Article  CAS  PubMed  Google Scholar 

  9. Laaksonen DE, Niskanen L, Punnonen K, Nyyssönen K, Tuomainen TP, Salonen R, Rauramaa R, Salonen JT (2003) Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol 149(6):601–608. https://doi.org/10.1530/eje.0.1490601

    Article  CAS  PubMed  Google Scholar 

  10. Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Models Mechan 2(5–6):231–237. https://doi.org/10.1242/dmm.001180

    Article  CAS  Google Scholar 

  11. Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23(5):469–480. https://doi.org/10.1111/j.1464-5491.2006.01858.x

    Article  CAS  PubMed  Google Scholar 

  12. Svartberg J, von Mühlen D, Sundsfjord J, Jorde R (2004) Waist circumference and testosterone levels in community dwelling men the Tromsø study. Eur J Epidemiol 19(7):657–663. https://doi.org/10.1023/b:ejep.0000036809.30558.8f

    Article  CAS  PubMed  Google Scholar 

  13. Derby CA, Zilber S, Brambilla D, Morales KH, McKinlay JB (2006) Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin Endocrinol (Oxf) 65(1):125–131. https://doi.org/10.1111/j.1365-2265.2006.02560.x

    Article  CAS  PubMed  Google Scholar 

  14. Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A (1996) Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 81(12):4358–4365. https://doi.org/10.1210/jcem.81.12.8954042

    Article  CAS  PubMed  Google Scholar 

  15. Phillips GB, Jing T, Heymsfield SB (2003) Relationships in men of sex hormones, insulin, adiposity, and risk factors for myocardial infarction. Metabolism 52(6):784–790. https://doi.org/10.1016/s0026-0495(03)00072-6

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan SA, Meehan AG, Shah A (2006) The age related decrease in testosterone is significantly exacerbated in obese men with the metabolic syndrome. What are the implications for the relatively high incidence of erectile dysfunction observed in these men? J Urol 176(4 Pt 1):1524–1527

    Article  CAS  PubMed  Google Scholar 

  17. Katznelson L, Rosenthal DI, Rosol MS, Anderson EJ, Hayden DL, Schoenfeld DA, Klibanski A (1998) Using quantitative CT to assess adipose distribution in adult men with acquired hypogonadism. AJR Am J Roentgenol 170:423–427

    Article  CAS  PubMed  Google Scholar 

  18. Giagulli VA, Kaufman JM, Vermeulen A (1994) Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metab 79(4):997–1000. https://doi.org/10.1210/jcem.79.4.7962311

    Article  CAS  PubMed  Google Scholar 

  19. Heald AH, Anderson SG, Ivison F, Riste L, Laing I, Cruickshank JK, Gibson JM (2005) Low sex hormone binding globulin is a potential marker for the metabolic syndrome in different ethnic groups. Exp Clin Endocrinol Diabetes 113(9):522–528. https://doi.org/10.1055/s-2005-865807

    Article  CAS  PubMed  Google Scholar 

  20. Plymate SR, Matej LA, Jones RE, Friedl KE (1988) Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab 67(3):460–464. https://doi.org/10.1210/jcem-67-3-460

    Article  CAS  PubMed  Google Scholar 

  21. Mårin P, Lönn L, Andersson B, Odén B, Olbe L, Bengtsson BA, Björntorp P (1996) Assimilation of triglycerides in subcutaneous and intraabdominal adipose tissues in vivo in men: effects of testosterone. J Clin Endocrinol Metab 81(3):1018–1022. https://doi.org/10.1210/jcem.81.3.8772568

    Article  PubMed  Google Scholar 

  22. Mårin P, Odén B, Björntorp P (1995) Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab 80(1):239–243. https://doi.org/10.1210/jcem.80.1.7829619

    Article  PubMed  Google Scholar 

  23. Seidell JC, Björntorp P, Sjöström L, Kvist H, Sannerstedt R (1990) Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism 39(9):897–901. https://doi.org/10.1016/0026-0495(90)90297-p

    Article  CAS  PubMed  Google Scholar 

  24. Muller M, Grobbee DE, den Tonkelaar I, Lamberts SW, van der Schouw YT (2005) Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab 90(5):2618–2623. https://doi.org/10.1210/jc.2004-1158

    Article  CAS  PubMed  Google Scholar 

  25. Ding EL, Song Y, Malik VS, Liu S (2006) Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 295(11):1288–1299. https://doi.org/10.1001/jama.295.11.1288

    Article  CAS  PubMed  Google Scholar 

  26. Pitteloud N, Hardin M, Dwyer AA, Valassi E, Yialamas M, Elahi D, Hayes FJ (2005) Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab 90(5):2636–2641. https://doi.org/10.1210/jc.2004-2190

    Article  CAS  PubMed  Google Scholar 

  27. Oh JY, Barrett-Connor E, Wedick NM, Wingard DL, Rancho Bernardo Study (2002) Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care 25(1):55–60. https://doi.org/10.2337/diacare.25.1.55

    Article  CAS  PubMed  Google Scholar 

  28. Chen RY, Wittert GA, Andrews GR (2006) Relative androgen deficiency in relation to obesity and metabolic status in older men. Diabetes Obes Metab 8(4):429–435. https://doi.org/10.1111/j.1463-1326.2005.00532.x

    Article  CAS  PubMed  Google Scholar 

  29. Giulietti A, Stoffels K, Decallonne B, Overbergh L, Mathieu C (2004) Monocytic expression behavior of cytokines in diabetic patients upon inflammatory stimulation. Ann N Y Acad Sci 1037:74–78. https://doi.org/10.1196/annals.1337.011

    Article  ADS  CAS  PubMed  Google Scholar 

  30. de Rekeneire N, Peila R, Ding J, Colbert LH, Visser M, Shorr RI, Kritchevsky SB, Kuller LH, Strotmeyer ES, Schwartz AV, Vellas B, Harris TB (2006) Diabetes, hyperglycemia, and inflammation in older individuals: the health, aging and body composition study. Diabetes Care 29(8):1902–1908. https://doi.org/10.2337/dc05-2327

    Article  PubMed  Google Scholar 

  31. Demirbag R, Yilmaz R, Erel O (2005) The association of total antioxidant capacity with sex hormones. Scand Cardiovasc J 39(3):172–176. https://doi.org/10.1080/14017430510035862

    Article  CAS  PubMed  Google Scholar 

  32. Lacko L, Wittke B, Geck P (1975) Interaction of steroids with the transport system of glucose in human erythrocytes. J Cell Physiol 86:673–680. https://doi.org/10.1002/jcp.1040860512

    Article  CAS  PubMed  Google Scholar 

  33. Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N, Milligan SR (2003) Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br J Pharmacol 140(3):487–499. https://doi.org/10.1038/sj.bjp.0705460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eckardstein AV, Wu FC (2003) Testosterone and atherosclerosis. Growth Horm IGF Res 13(Suppl A):S72–S84. https://doi.org/10.1016/s1096-6374(03)00059-5

    Article  PubMed  Google Scholar 

  35. Simon D, Charles MA, Nahoul K, Orssaud G, Kremski J, Hully V, Joubert E, Papoz L, Eschwege E (1997) Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: the telecom study. J Clin Endocrinol Metab 82(2):682–685. https://doi.org/10.1210/jcem.82.2.3766

    Article  CAS  PubMed  Google Scholar 

  36. Tan KC, Shiu SW, Kung AW (1999) Alterations in hepatic lipase and lipoprotein subfractions with transdermal testosterone replacement therapy. Clin Endocrinol (Oxf) 51(6):765–769. https://doi.org/10.1046/j.1365-2265.1999.00882.x

    Article  CAS  PubMed  Google Scholar 

  37. Bhasin S, Herbst K (2003) Testosterone and atherosclerosis progression in men. Diabetes Care 26(6):1929–1931. https://doi.org/10.2337/diacare.26.6.1929

    Article  CAS  PubMed  Google Scholar 

  38. Fessel WJ (1980) High uric acid as an indicator of cardiovascular disease. Independence from obesity. Am J Med 68(3):401–404. https://doi.org/10.1016/0002-9343(80)90111-4

    Article  CAS  PubMed  Google Scholar 

  39. Bengtsson C, Lapidus L, Stendahl C, Waldenström J (1988) Hyperuricaemia and risk of cardiovascular disease and overall death. A 12-year follow-up of participants in the population study of women in Gothenburg, Sweden. Acta Med Scand 224(6):549–555

    Article  CAS  PubMed  Google Scholar 

  40. Nagahama K, Iseki K, Inoue T, Touma T, Ikemiya Y, Takishita S (2004) Hyperuricemia and cardiovascular risk factor clustering in a screened cohort in Okinawa. Japan. Hypertens Res 27(4):227–233. https://doi.org/10.1291/hypres.27.227

    Article  PubMed  Google Scholar 

  41. Rathmann W, Funkhouser E, Dyer AR, Roseman JM (1998) Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol 8(4):250–261. https://doi.org/10.1016/s1047-2797(97)00204-4

    Article  CAS  PubMed  Google Scholar 

  42. Gambineri A, Pelusi C, Pasquali R (2003) Testosterone levels in obese male patients with obstructive sleep apnea syndrome: relation to oxygen desaturation, body weight, fat distribution and the metabolic parameters. J Endocrinol Invest 26(6):493–498. https://doi.org/10.1007/BF03345209

    Article  CAS  PubMed  Google Scholar 

  43. Demirbag R, Yilmaz R, Ulucay A, Unlu D (2005) The inverse relationship between thoracic aortic intima media thickness and testosterone level. Endocr Res 31(4):335–344. https://doi.org/10.1080/07435800500449494

    Article  CAS  PubMed  Google Scholar 

  44. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98(8):731–733. https://doi.org/10.1161/01.cir.98.8.731

    Article  CAS  PubMed  Google Scholar 

  45. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 349(9050):462–466. https://doi.org/10.1016/s0140-6736(96)07591-5

    Article  CAS  PubMed  Google Scholar 

  46. Tang YJ, Lee WJ, Chen YT, Liu PH, Lee MC, Sheu WH (2007) Serum testosterone level and related metabolic factors in men over 70 years old. J Endocrinol Invest 30(6):451–458

    Article  CAS  PubMed  Google Scholar 

  47. Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB (2006) Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 91(3):843–850. https://doi.org/10.1210/jc.2005-1326

    Article  CAS  PubMed  Google Scholar 

  48. Nakhai Pour HR, Grobbee DE, Muller M, van der Schouw YT (2007) Association of endogenous sex hormone with C-reactive protein levels in middle-aged and elderly men. Clin Endocrinol (Oxf) 66(3):394–398. https://doi.org/10.1111/j.1365-2265.2007.02745.x

    Article  CAS  PubMed  Google Scholar 

  49. Van Pottelbergh I, Braeckman L, De Bacquer D, De Backer G, Kaufman JM (2003) Differential contribution of testosterone and estradiol in the determination of cholesterol and lipoprotein profile in healthy middle-aged men. Atherosclerosis 166(1):95–102. https://doi.org/10.1016/s0021-9150(02)00308-8

    Article  PubMed  Google Scholar 

  50. Crave JC, Lejeune H, Brébant C, Baret C, Pugeat M (1995) Differential effects of insulin and insulin-like growth factor I on the production of plasma steroid-binding globulins by human hepatoblastoma-derived (Hep G2) cells. J Clin Endocrinol Metab 80(4):1283–1289. https://doi.org/10.1210/jcem.80.4.7536204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sercan Gucenmez.

Ethics declarations

Ethics approval

The study was approved by the Ankara Training and Research Hospital Ethical Committee (number: 0345). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gucenmez, S., Yildiz, P., Donderici, O. et al. The effect of testosterone level on metabolic syndrome: a cross-sectional study. Hormones 23, 163–169 (2024). https://doi.org/10.1007/s42000-023-00507-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00507-w

Keywords

Navigation