Skip to main content
Log in

Comparison of insulin resistance-associated parameters in US adults: a cross-sectional study

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Background

Triglyceride-glucose (TyG) is correlated with cardiovascular events caused by insulin resistance (IR). The aim of this study was to analyze the relationship between TyG and its related indicators and IR among US adults from 2007 to 2018 in the National Health and Nutrition Examination Survey (NHANES) database so as to identify more accurate and reliable predictors of IR.

Methods

This is a cross-sectional study including 9884 participants (2255 with IR and 7629 without IR). TyG, TyG-body mass index (TyG-BMI), TyG waist circumference (TyG-WC), and TyG waist-to-height ratio (TyG-WtHR) were measured using standard formulas.

Results

TyG, TyG-BMI, TyG-WC, and TyG-WtHR were significantly correlated with IR in the general population, with TyG-WC being the most strongly correlated, with an odds ratio of 8.00 (95% confidence interval 5.05–12.67) for the fourth quartile of TyG-WC compared with the first quartile in the adjusted model. Receiver operating characteristic (ROC) analysis of the participants showed that the maximum area under the TyG-WC curve was 0.8491, which was significantly higher than that of the other three indicators. Moreover, this trend was stable both among people of both genders and among patients with coronary heart disease (CHD), hypertension, and diabetes.

Conclusions

The present study confirms that the TyG-WC index is more successful than TyG alone in identifying IR. In addition, our findings demonstrate that TyG-WC is a simple and effective marker for screening the general US adult population and those with CHD, hypertension, and diabetes and can be effectively used in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in NHANES at [https://www.cdc.gov/nchs/NHANES/].

References

  1. Kolka CM, Bergman RN (2013) The endothelium in diabetes: its role in insulin access and diabetic complications. Rev Endocr Metab Disord 14:13–19. https://doi.org/10.1007/s11154-012-9233-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93(Suppl 1):S52–S59. https://doi.org/10.1016/S0168-8227(11)70014-6

    Article  CAS  PubMed  Google Scholar 

  3. Ye J (2021) Mechanism of insulin resistance in obesity: a role of ATP. Front Med 15:372–382. https://doi.org/10.1007/s11684-021-0862-5

    Article  PubMed  Google Scholar 

  4. Neeland IJ, Poirier P, Després JP (2018) Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation 137:1391–1406. https://doi.org/10.1161/circulationaha.117.029617

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E (2012) Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care 35:1605–1610. https://doi.org/10.2337/dc11-2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787. https://doi.org/10.1038/414782a

    Article  CAS  PubMed  Google Scholar 

  7. da Silva AA, do Carmo JM, Li X, Wang Z, Mouton AJ, Hall JE (2020) Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Can J Cardiol 36:671–682. https://doi.org/10.1016/j.cjca.2020.02.066

    Article  PubMed  Google Scholar 

  8. Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR (2021) Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 119:154766. https://doi.org/10.1016/j.metabol.2021.154766

    Article  CAS  PubMed  Google Scholar 

  9. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J (2016) Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 134:441–450. https://doi.org/10.1161/circulationaha.115.018912

    Article  PubMed  PubMed Central  Google Scholar 

  10. GBD (2017) DALYs and HALE Collaborators (2018) Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1859–1922. https://doi.org/10.1016/s0140-6736(18)32335-3

    Article  Google Scholar 

  11. Caballero B (2019) Humans against Obesity: Who Will Win? Adv Nutr 10:S4–S9. https://doi.org/10.1093/advances/nmy055

    Article  PubMed  PubMed Central  Google Scholar 

  12. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214-223. https://doi.org/10.1152/ajpendo.1979.237.3.E214

    Article  CAS  PubMed  Google Scholar 

  13. Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X (2014) Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol 13:146. https://doi.org/10.1186/s12933-014-0146-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller WG, Thienpont LM, Van Uytfanghe K, Clark PM, Lindstedt P, Nilsson G, Steffes MW (2009) Toward standardization of insulin immunoassays. Clin Chem 55:1011–1018. https://doi.org/10.1373/clinchem.2008.118380

    Article  CAS  PubMed  Google Scholar 

  15. He J, He S, Liu K, Wang Y, Shi D, Chen X (2014) The TG/HDL-C Ratio Might Be a Surrogate for Insulin Resistance in Chinese Nonobese Women. Int J Endocrinol 2014:105168. https://doi.org/10.1155/2014/105168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu YW, Chang CC, Chou RH, Tsai YL, Liu LK, Chen LK, Huang PH, Lin SJ (2021) Gender difference in the association between TyG index and subclinical atherosclerosis: results from the I-Lan Longitudinal Aging Study. Cardiovasc Diabetol 20:206. https://doi.org/10.1186/s12933-021-01391-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park K, Ahn CW, Lee SB, Kang S, Nam JS, Lee BK, Kim JH, Park JS (2019) Elevated TyG Index Predicts Progression of Coronary Artery Calcification. Diabetes Care 42:1569–1573. https://doi.org/10.2337/dc18-1920

    Article  CAS  PubMed  Google Scholar 

  18. Alizargar J, Bai CH, Hsieh NC, Wu SV (2020) Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc Diabetol 19:8. https://doi.org/10.1186/s12933-019-0982-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen TC, Clark J, Riddles MK, Mohadjer LK, Fakhouri THI (2020) National Health and Nutrition Examination Survey, 2015–2018: Sample Design and Estimation Procedures. Vital Health Stat 2:1–35. https://pubmed.ncbi.nlm.nih.gov/33663649/. Accessed April 2020

  20. Ehrampoush E, MirzayRazzaz J, Arjmand H, Ghaemi A, RaeisiShahraki H, EbrahimBabaei A, Osati S, Homayounfar R (2021) The association of vitamin D levels and insulin resistance. Clin Nutr ESPEN 42:325–332. https://doi.org/10.1016/j.clnesp.2021.01.012

    Article  PubMed  Google Scholar 

  21. Lamprea-Montealegre JA, Staplin N, Herrington WG, Haynes R, Emberson J, Baigent C, de Boer IH, SHARP Collaborative Group (2020) Apolipoprotein B, Triglyceride-Rich Lipoproteins, and Risk of Cardiovascular Events in Persons with CKD. Clin J Am Soc Nephrol 15:47–60. https://doi.org/10.2215/CJN.07320619

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Fan H, Wang T, Yu B, Mao S, Wang X, Zhang W, Wang L, Zhang Y, Ren Z, Liang B (2022) TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients. Cardiovasc Diabetol 21:123. https://doi.org/10.1186/s12933-022-01548-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng S, Shi S, Ren X, Han T, Li Y, Chen Y, Liu W, Hou PC, Hu Y (2016) Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: cross-sectional and prospective cohort study. J Transl Med 14:260. https://doi.org/10.1186/s12967-016-1020-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song S, Son DH, Baik SJ, Cho WJ, Lee YJ (2022) Triglyceride Glucose-Waist Circumference (TyG-WC) Is a Reliable Marker to Predict Non-Alcoholic Fatty Liver Disease. Biomedicines 10:2251. https://doi.org/10.3390/biomedicines10092251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nkemjika S, Ifebi E, Cowan LT, Chun-Hai Fung I, Twum F, Liu F, Zhang J (2020) Association between serum folate and cardiovascular deaths among adults with hypertension. Eur J Clin Nutr 74:970–978. https://doi.org/10.1038/s41430-019-0533-7

    Article  CAS  PubMed  Google Scholar 

  26. Taylor R (2013) Type 2 diabetes: etiology and reversibility. Diabetes Care 36:1047–1055. https://doi.org/10.2337/dc12-1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren X, Chen ZA, Zheng S, Han T, Li Y, Liu W, Hu Y (2016) Association between Triglyceride to HDL-C Ratio (TG/HDL-C) and Insulin Resistance in Chinese Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLoS One 11:e0154345. https://doi.org/10.1371/journal.pone.0154345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang HT, Yoon JH, Kim JY, Ahn SK, Linton JA, Koh SB, Kim JK (2012) The association between the ratio of triglyceride to HDL-C and insulin resistance according to waist circumference in a rural Korean population. Nutr Metab Cardiovasc Dis 22:1054–1060. https://doi.org/10.1016/j.numecd.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  29. Irace C, Carallo C, Scavelli FB, De Franceschi MS, Esposito T, Tripolino C, Gnasso A (2013) Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract 67:665–672. https://doi.org/10.1111/ijcp.12124

    Article  CAS  PubMed  Google Scholar 

  30. Hukportie DN, Li FR, Zhou R, Zheng JZ, Wu XX, Wu XB (2021) Anthropometric Measures and Incident Diabetic Nephropathy in Participants With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 12:706845. https://doi.org/10.3389/fendo.2021.706845

    Article  PubMed  Google Scholar 

  31. Raghavan S, Pachucki MC, Chang Y, Porneala B, Fox CS, Dupuis J, Meigs JB (2016) Incident Type 2 Diabetes Risk is Influenced by Obesity and Diabetes in Social Contacts: a Social Network Analysis. J Gen Intern Med 31:1127–1133. https://doi.org/10.1007/s11606-016-3723-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:e330–e341. https://doi.org/10.1016/j.orcp.2013.05.004

    Article  PubMed  Google Scholar 

  33. Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13:275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.x

    Article  CAS  PubMed  Google Scholar 

  34. Petermann-Rocha F, Ulloa N, Martínez-Sanguinetti MA, Leiva AM, Martorell M, Villagrán M, Troncoso-Pantoja C, Ho FK, Celis-Morales C, Pizarro A (2020) Is waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population? Nutrition 79–80:110932. https://doi.org/10.1016/j.nut.2020.110932

    Article  CAS  PubMed  Google Scholar 

  35. Lim J, Kim J, Koo SH, Kwon GC (2019) comparison of triglyceride glucose index, and related parameters to predict insulin resistance in korean adults: an analysis of the 2007–2010 korean national health and nutrition examination survey. PLoS One 14:e0212963. https://doi.org/10.1371/journal.pone.0212963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, Giovannucci EL (2018) Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. Bmj 362:k2575. https://doi.org/10.1136/bmj.k2575

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyi Yan or Yongping Jia.

Ethics declarations

Ethics approval

As the data were obtained from a public database, ethical approval was waived.

Informed consent

Not applicable to this study as the data source for this study is a public database.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Wang, D. & Jia, Y. Comparison of insulin resistance-associated parameters in US adults: a cross-sectional study. Hormones 22, 331–341 (2023). https://doi.org/10.1007/s42000-023-00448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00448-4

Keywords

Navigation