Skip to main content

Perinatal stress exposure induced oxidative stress, metabolism disorder, and reduced GLUT-2 in adult offspring of rats

Abstract

Purpose

Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring.

Methods

In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring.

Results

The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged.

Conclusion

Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23(6 Suppl):588S–595S

  2. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Howland MA et al (2017) Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab 12(5):321–339

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kapoor A et al (2006) Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J Physiol 572(1):31–44

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Buchwald U et al (2012) Prenatal stress programs lipid metabolism enhancing cardiovascular risk in the female F1, F2, and F3 generation in the primate model common marmoset (Callithrix jacchus). J Med Primatol 41(4):231–240

    CAS  PubMed  Google Scholar 

  6. Entringer S et al (2012) Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. J Nutr Metab 2012:632548

  7. Brunton PJ et al (2013) Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats. J Endocrinol 217(2):161–173

    CAS  PubMed  Google Scholar 

  8. Nilsson C et al (2001) Maternal endotoxemia results in obesity and insulin resistance in adult male offspring. Endocrinology 142(6):2622–2630

    CAS  PubMed  Google Scholar 

  9. Peuchant E et al (2004) Oxidative and antioxidative status in pregnant women with either gestational or type 1 diabetes. Clin Biochem 37(4):293–298

    CAS  PubMed  Google Scholar 

  10. Schiavone S et al (2013) Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal 18(12):1475–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson CB et al (2013) Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS ONE 8(10):e76146

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Madhyastha S et al (2014) Resveratrol for prenatal-stress-induced oxidative damage in growing brain and its consequences on survival of neurons. J Basic Clin Physiol Pharmacol 25(1):63–72

    CAS  PubMed  Google Scholar 

  13. Roghair RD et al (2008) Endothelial superoxide production is altered in sheep programmed by early gestation dexamethasone exposure. Neonatology 93(1):19–27

    CAS  PubMed  Google Scholar 

  14. Thompson LP, Al-Hasan Y (2012) Impact of oxidative stress in fetal programming. J Pregnancy 2012

  15. Gurgul-Convey E et al (2016) Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia 59(10):2125–2133

    CAS  PubMed  Google Scholar 

  16. Tarry-Adkins JL et al (2010) Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 24(8):2762–2771

    CAS  PubMed  Google Scholar 

  17. Xu Q et al (2013) Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells. Braz J Med Biol Res. 46:949–955

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cerf ME et al (2006) Hyperglycaemia and reduced glucokinase expression in weanling offspring from dams maintained on a high-fat diet. Br J Nutr 95(2):391–396

    CAS  PubMed  Google Scholar 

  19. Koenig JI et al (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156(2):251–261

    PubMed  Google Scholar 

  20. Karbaschi R et al (2017) Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring. Nutr Metab 14(1):1–12

    Google Scholar 

  21. Salimi M et al (2016) High-fat diet with stress impaired islets’ insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats’ proestrus phase. J Physiol Pharmacol 67(5):653–666

    CAS  PubMed  Google Scholar 

  22. Khare P et al (2018) Involvement of glucagon in preventive effect of menthol against high fat diet induced obesity in mice. Front Pharmacol 9:1244

  23. Kajaia N et al (2007) Low sex hormone-binding globulin as a predictive marker for insulin resistance in women with hyperandrogenic syndrome. Eur J Endocrinol 157(4):499–507

    CAS  PubMed  Google Scholar 

  24. Pacini G, Mari A (2003) Methods for clinical assessment of insulin sensitivity and β-cell function. Baillieres Best Pract Res Clin Endocrinol Metab 17(3):305–322

    CAS  Google Scholar 

  25. Chukwuebuka NB et al (2021) Changes in antioxidant enzymes activities and lipid peroxidase level in tissues of stress-induced rats. Biomed Pharmacol J 14(2):583–596

    CAS  Google Scholar 

  26. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  PubMed  Google Scholar 

  27. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151

    CAS  PubMed  Google Scholar 

  28. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier health sciences.

  29. Wilson CA et al (2013) Exposure to variable prenatal stress in rats: effects on anxiety-related behaviors, innate and contextual fear, and fear extinction. Behav Brain Res 238:279–288

    PubMed  Google Scholar 

  30. Herman J (2013) Neural control of chronic stress adaptation. Front Behav Neurosci. 7:61

    PubMed  PubMed Central  Google Scholar 

  31. Guan S-z et al (2021) The mechanism of enriched environment repairing the learning and memory impairment in offspring of prenatal stress by regulating the expression of activity-regulated cytoskeletal-associated and insulin-like growth factor-2 in hippocampus. Environ Health Prev Med 26(1):1–12

    Google Scholar 

  32. Brunton P, Russell J (2010) Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 22(4):258–271

    CAS  PubMed  Google Scholar 

  33. Schöpper H et al (2012) Effects of prenatal stress on hypothalamic–pituitary–adrenal (HPA) axis function over two generations of guinea pigs (Cavia aperea f porcellus). Gen Comp Endocrinol 176(1):18–27

    PubMed  Google Scholar 

  34. Nagano M et al (2008) Prenatal dexamethasone exposure affects anxiety-like behaviour and neuroendocrine systems in an age-dependent manner. Neurosci Res 60(4):364–371

    CAS  PubMed  Google Scholar 

  35. Zaidan H et al (2013) Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring. Biol Psychiat 74(9):680–687

    CAS  PubMed  Google Scholar 

  36. He N et al (2016) Parental life events cause behavioral difference among offspring: adult pre-gestational restraint stress reduces anxiety across generations. Sci Rep 6(1):1–12

    Google Scholar 

  37. Hinde K et al (2015) Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav Ecol 26(1):269–281

    PubMed  Google Scholar 

  38. Pankevich DE et al (2009) Prenatal stress programming of offspring feeding behavior and energy balance begins early in pregnancy. Physiol Behav 98(1–2):94

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lesage J et al (2004) Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol 181(2):291–296

    CAS  PubMed  Google Scholar 

  40. Li B et al (2015) Effect of immobilization stress on the appetite and stomach ghrelin expression in maternal mice. Int J Clin Exp Pathol 8(12):15993

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Franko K et al (2010) Differential effects of prenatal stress and glucocorticoid administration on postnatal growth and glucose metabolism in rats. J Endocrinol 204(3):319

    CAS  PubMed  Google Scholar 

  42. Lerario D et al (2001) Influence of dexamethasone and weight loss on the regulation of serum leptin levels in obese individuals. Braz J Med Biol Res 34(4):479–487

    CAS  PubMed  Google Scholar 

  43. Arfuso F et al (2021) Physiological correlation between hypothalamic–pituitary–adrenal axis, leptin, UCP1 and lipid panel in mares during late pregnancy and early postpartum period. Animals 11(7):2051

    PubMed  PubMed Central  Google Scholar 

  44. Werdermann M et al (2021) Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Molec Metab 43:101112

    CAS  Google Scholar 

  45. Zakrzewska K et al (1997) Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes 46(4):717–719

    CAS  PubMed  Google Scholar 

  46. Brunton PJ (2013) Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring. Reproduction 146(5):R175–R189

    CAS  PubMed  Google Scholar 

  47. O’Regan D et al (2004) Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab 287(5):E863–E870

    CAS  PubMed  Google Scholar 

  48. Somm E et al (2012) Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats. PLoS ONE 7(11):e50131

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Facchi JC et al (2020) Perinatal programming of metabolic diseases: the role of glucocorticoids. Metabolism. 104:154047

    CAS  PubMed  Google Scholar 

  50. Frantz EDC et al (2011) Transgenerational endocrine pancreatic adaptation in mice from maternal protein restriction in utero. Mech Ageing Dev 132(3):110–116

    CAS  PubMed  Google Scholar 

  51. Tuohetimulati G et al (2012) Effect of maternal high-fat diet on pancreatic beta cells of the offspring. Diabetol Int 3(4):217–223

    Google Scholar 

  52. Fine NH et al (2018) Glucocorticoids reprogram β-cell signaling to preserve insulin secretion. Diabetes 67(2):278–290

    CAS  PubMed  Google Scholar 

  53. Protzek AO et al (2014) Augmented β-cell function and mass in glucocorticoid-treated rodents are associated with increased islet Ir-β /AKT/mTOR and decreased AMPK/ACC and AS160 signaling. Int J Endocrinol 2014:983453

  54. Blondeau B et al (2012) Novel transgenic mice for inducible gene overexpression in pancreatic cells define glucocorticoid receptor-mediated regulations of beta cells. PLoS ONE 7(2):e30210

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Szkudelski T, Szkudelska K (2019) The relevance of AMP-activated protein kinase in insulin-secreting β cells: a potential target for improving β cell function? J Physiol Biochem. 75(4):423–432

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Andersson IJ et al (2009) Maternal stress and development of atherosclerosis in the adult apolipoprotein E-deficient mouse offspring. Am J Physiol Regul Integr Comp Physiol 296(3):R663–R671

    CAS  PubMed  Google Scholar 

  57. De Blasio MJ et al (2007) Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring. Am J Physiol Endocrinol Metab 293(1):E75–E82

    PubMed  Google Scholar 

  58. Zinkhan EK et al (2018) Prenatal exposure to a maternal high fat diet increases hepatic cholesterol accumulation in intrauterine growth restricted rats in part through microRNA-122 inhibition of Cyp7a1. Front Physiol 9:645

    PubMed  PubMed Central  Google Scholar 

  59. Drake AJ et al (2010) Prenatal dexamethasone programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not obesity on a high-fat diet. Endocrinology 151(4):1581–1587

    CAS  PubMed  Google Scholar 

  60. Magee TR et al (2008) Down-regulation of transcription factor peroxisome proliferator-activated receptor in programmed hepatic lipid dysregulation and inflammation in intrauterine growth–restricted offspring. Am J Obstet Gynecol. 199(3):271.e1-271.e5

    Google Scholar 

  61. Pérez-Rodríguez L et al (2015) Measuring oxidative stress: the confounding effect of lipid concentration in measures of lipid peroxidation. Physiol Biochem Zool 88(3):345–351

    PubMed  Google Scholar 

  62. Jeje SRaji Y, (2015) Effects of maternal dexamethasone exposure during lactation on metabolic imbalance and oxidative stress in the liver of male offsprings of Wistar rats. Niger J Physiol Sci 30(1–2):131–137

    Google Scholar 

  63. Slama FB et al (2015) Plasma levels of leptin and ghrelin and their correlation with BMI, and circulating lipids and glucose in obese Tunisian women. Asian Biomed 9(2):161–168

    Google Scholar 

  64. Du Y et al (2016) Leptin decreases the expression of low-density lipoprotein receptor via PCSK9 pathway: linking dyslipidemia with obesity. J Transl Med 14(1):1–9

    Google Scholar 

  65. Fatima M et al (2019) Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: role of GSK-3β. Sci Rep 9(1):1–13

    CAS  Google Scholar 

  66. Scott H et al (2019) Maternal antioxidant treatment prevents behavioural and neural changes in offspring exposed to prenatal social stress. bioRxiv. 701292

  67. Ahlbom E et al (2000) Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proc Natl Acad Sci 97(26):14726–14730

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Von Bergen NH et al (2009) Fetal programming alters reactive oxygen species production in sheep cardiac mitochondria. Clin Sci 116(8):659–668

    Google Scholar 

  69. Lamothe J et al (2021) Oxidative Stress Mediates the Fetal Programming of Hypertension by Glucocorticoids. Antioxidants 10(4):531

    CAS  PubMed  PubMed Central  Google Scholar 

  70. You J-M et al (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87(6):440–447

    CAS  PubMed  Google Scholar 

  71. Lamothe J et al (2020) The role of DNMT and HDACs in the fetal programming of hypertension by glucocorticoids. Oxid Med Cell Longev 2020:5751768

  72. Gremlich S et al (1997) Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic β cells: comparison with the effects of fatty acids. J Biol Chem 272(6):3216–3222

    CAS  PubMed  Google Scholar 

  73. Sadeghimahalli F et al (2015) Effect of early life stress on pancreatic isolated islets’ insulin secretion in young adult male rats subjected to chronic stress. Endocrine 48(2):493–503

    CAS  PubMed  Google Scholar 

  74. Rafacho A et al (2007) Dexamethasone-induced insulin resistance is associated with increased connexin 36 mRNA and protein expression in pancreatic rat islets. Can J Physiol Pharmacol 85(5):536–545

    CAS  PubMed  Google Scholar 

  75. Breant B et al (2006) Nutrition, glucocorticoids and pancreas development. Horm Res Paediatr 65(Suppl. 3):98–104

    CAS  Google Scholar 

  76. Dumortier O et al (2011) Impairment of rat fetal beta-cell development by maternal exposure to dexamethasone during different time-windows. PLoS ONE 6(10):e25576

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen C-N et al (2003) Glucocorticoids suppress β-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 375(1):41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Valtat B et al (2011) Genetic evidence of the programming of beta cell mass and function by glucocorticoids in mice. Diabetologia 54(2):350–359

    CAS  PubMed  Google Scholar 

  79. Jörns A et al (2010) Beta cell mass regulation in the rat pancreas through glucocorticoids and thyroid hormones. Pancreas 39(8):1167–1172

    PubMed  Google Scholar 

  80. Siddiqui A et al (2019) Association of oxidative stress and inflammatory markers with chronic stress in patients with newly diagnosed type 2 diabetes. Diabetes Metab Res Rev 35(5):e3147

    PubMed  Google Scholar 

  81. Roma LP et al (2012) Pancreatic islets from dexamethasone-treated rats show alterations in global gene expression and mitochondrial pathways. Gen Physiol Biophys 31(1):65–76

    CAS  PubMed  Google Scholar 

Download references

Funding

The results described in this paper were part of a PhD student thesis and were supported by a grant from Drug applied research center of Tabriz University of Medical Sciences (grant no 60218) and a grant from Research Deputy of School of Medicine, Shahid Beheshti University of Medical Sciences (grant no 27310).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Homeira Zardooz or Rana ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Keyhanmanesh.

Ethics declarations

Ethics approval

The experiments in this study were plotted according the previously delivered guidelines (NIH Publication No. 85–23, revised 1996) and approved by the animal care and ethics committee of Tabriz University of Medical Sciences (IR.TBZMED.REC.1397.336) and ethics committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.MSP.REC.1400.300).

Informed consent

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salimi, M., Eskandari, F., Khodagholi, F. et al. Perinatal stress exposure induced oxidative stress, metabolism disorder, and reduced GLUT-2 in adult offspring of rats. Hormones (2022). https://doi.org/10.1007/s42000-022-00383-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42000-022-00383-w

Keywords

  • Perinatal stress
  • Glucose metabolism
  • Oxidative stress
  • GLUT-2
  • Offspring