Skip to main content

Correlation of systemic metabolic inflammation with knee osteoarthritis

Abstract

Purpose

The aim of this study was to analyze local and systematic inflammatory status in knee osteoarthritis (KOA), focusing on intra-articular and remote adipose tissue depots, and to explore its potential association with metabolic syndrome (MetS).

Methods

Patients (n = 27) with end-stage KOA were enrolled in the study and samples from infrapatellar fat pad (IFP), synovium, subcutaneous adipose tissue (SAT), synovial fluid (SF), and serum were collected. In homogenates from the tissues, mRNA expression of developmental endothelial locus-1 (DEL-1) was determined. Interleukin 6 (IL-6) and interleukin 8 (IL-8) were measured in tissues and SF and serum samples by enzyme-linked immunosorbent assay.

Results

Fifteen patients fulfilled MetS criteria (w-MetS group) and 12 did not (non-MetS). In the entire population, IL-6 levels were significantly higher in IFP compared to synovium (median (interquartile range), 26.05 (26.16) vs. 15.75 (14.8) pg/mg of total protein, p = 0.043), but not to SAT (17.89 (17.9) pg/mg); IL-8 levels were significantly higher in IFP (17.3 (19.3) pg/mg) and SAT (24.2 (26) pg/mg) when compared to synovium (8.45 (6.17) pg/mg) (p = 0.029 and < 0.001, respectively). Significantly higher IL-6 concentrations in SF were detected in w-MetS patients compared to non-MetS (194.8 (299) vs. 64.1 (86.9) pg/ml, p = 0.027). Finally, DEL-1 mRNA expression was higher in IFP compared to synovium (eightfold, p = 0.019).

Conclusions

Our findings support the critical role of IFP in knee joint homeostasis and progression of KOA. Furthermore, in KOA patients w-MetS, SAT is thought to play an important role in intra-knee inflammation via secretion of soluble inflammatory mediators, such as IL-6.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Belluzzi E, El Hadi H, Granzotto M et al (2017) Systemic and local adipose tissue in knee osteoarthritis: obesity and fat pad in knee osteoarthritis. J Cell Physiol 232:1971–1978. https://doi.org/10.1002/jcp.25716

    CAS  Article  PubMed  Google Scholar 

  2. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. https://doi.org/10.1002/art.34453

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625–635. https://doi.org/10.1038/nrrheum.2010.159

    CAS  Article  PubMed  Google Scholar 

  4. Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM et al (2011) The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann Rheum Dis 70:851–857. https://doi.org/10.1136/ard.2010.140046

    CAS  Article  PubMed  Google Scholar 

  5. Distel E, Cadoudal T, Durant S et al (2009) The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum 60:3374–3377. https://doi.org/10.1002/art.24881

    CAS  Article  PubMed  Google Scholar 

  6. Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5:77–94. https://doi.org/10.1177/1759720X12467868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Alberti KG, Eckel RH, Grundy SM et al (2010) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Forceon Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World HeartFederation; International Atherosclerosis Society; and International Association for the Study of Obesity. Obes metabol 7:63–65. https://doi.org/10.14341/2071-8713-5281

    Article  Google Scholar 

  8. Courties A, Berenbaum F, Sellam J (2019) The phenotypic approach to osteoarthritis: a look at metabolic syndrome-associated osteoarthritis. Joint Bone Spine 86:725–730. https://doi.org/10.1016/j.jbspin.2018.12.005

    CAS  Article  PubMed  Google Scholar 

  9. Livshits G, Zhai G, Hart DJ et al (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheum 60:2037–2045. https://doi.org/10.1002/art.24598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Rai MF, Sandell L (2011) Inflammatory mediators: tracing links between obesity and osteoarthritis. Crit Rev Eukar Gene Expr 21:131–142. https://doi.org/10.1615/CritRevEukarGeneExpr.v21.i2.30

    CAS  Article  Google Scholar 

  11. Chow YY, Chin K-Y (2020) The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm 2020:1–19. https://doi.org/10.1155/2020/8293921

    CAS  Article  Google Scholar 

  12. Urban H, Little CB (2018) The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (United Kingdom) 57:iv10–iv21. https://doi.org/10.1093/rheumatology/kex399

    CAS  Article  Google Scholar 

  13. Kaneko S, Satoh T, Chiba J et al (2000) Interleukin–6 and interleukin–8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell Mol Ther 6:71–79. https://doi.org/10.1080/13684730050515796

    CAS  Article  PubMed  Google Scholar 

  14. Hidai C, Zupancic T, Penta K et al (1998) Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. Genes Dev 12:21–33. https://doi.org/10.1101/gad.12.1.21

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Pfister BE, Aydelotte MB, Burkhart W et al (2001) Del1: a new protein in the superficial layer of articular cartilage. Biochem Biophys Res Commun 286:268–273. https://doi.org/10.1006/bbrc.2001.5377

    CAS  Article  PubMed  Google Scholar 

  16. Eskan MA, Jotwani R, Abe T et al (2012) The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 13:465–473. https://doi.org/10.1038/ni.2260

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Choi EY, Lim J-H, Neuwirth A et al (2015) Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry 20:880–888. https://doi.org/10.1038/mp.2014.146

    CAS  Article  PubMed  Google Scholar 

  18. Yan S, Chen L, Zhao Q et al (2018) Developmental endothelial locus-1 (Del-1) antagonizes Interleukin-17-mediated allergic asthma. Immunol Cell Biol 96:526–535. https://doi.org/10.1111/imcb.12023

    CAS  Article  PubMed  Google Scholar 

  19. Kourtzelis I, Li X, Mitroulis I et al (2019) DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 20:40–49. https://doi.org/10.1038/s41590-018-0249-1

    CAS  Article  PubMed  Google Scholar 

  20. Hajishengallis G, Chavakis T (2019) DEL-1-regulated immune plasticity and inflammatory disorders. Trends Mol Med 25:444–459. https://doi.org/10.1016/j.molmed.2019.02.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Tran MC, Bhatia NJ et al (2016) Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis. PLoS ONE 11:e0160684. https://doi.org/10.1371/journal.pone.0160684

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Z, Boyko T, Tran MC et al (2018) DEL1 protects against chondrocyte apoptosis through integrin binding. J Surg Res 231:1–9. https://doi.org/10.1016/j.jss.2018.04.066

    CAS  Article  PubMed  Google Scholar 

  23. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    CAS  Article  PubMed  Google Scholar 

  25. Doxaki C, Kampranis SC, Eliopoulos AG et al (2015) Coordinated regulation of miR-155 and miR-146a genes during induction of endotoxin tolerance in macrophages. J Immunol 195:5750–5761. https://doi.org/10.4049/jimmunol.1500615

    CAS  Article  PubMed  Google Scholar 

  26. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    CAS  Article  PubMed  Google Scholar 

  27. Eymard F, Pigenet A, Citadelle D et al (2017) Knee and hip intra-Articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis. Ann Rheum Dis 76:1142–1148. https://doi.org/10.1136/annrheumdis-2016-210478

    CAS  Article  PubMed  Google Scholar 

  28. Bastiaansen-Jenniskens YM, Clockaerts S, Feijt C et al (2012) Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage. Ann Rheum Dis 71:288–294. https://doi.org/10.1136/ard.2011.153858

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Emmanouil Yiachnakis for his helpful comments on statistical analysis and Smaragda Poulaki and Urania Kolliniati for their assistance.

Funding

Partial financial support was received from a Special Fund for Research Grants (ELKE) of the University of Crete to GK.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission (1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Maria Venihaki.

Ethics declarations

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of University Hospital of Heraklion, Crete (protocol code 8382 and date of approval 13–7-2016).

Informed consent statement

Informed consent was obtained from all subjects involved in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoforakis, Z., Dermitzaki, E., Paflioti, E. et al. Correlation of systemic metabolic inflammation with knee osteoarthritis. Hormones (2022). https://doi.org/10.1007/s42000-022-00381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42000-022-00381-y

Keywords

  • Arthritis
  • Inflammation
  • Metabolic syndrome
  • Cytokines
  • DEL-1