Skip to main content
Log in

CircRTN1 acts as a miR-431-5p sponge to promote thyroid cancer progression by upregulating TGFA

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to explore the role and underlying mechanism of circular RNA (circRNA) reticulon 1 (circRTN1) in thyroid cancer (TC).

Methods

The expression levels of circRTN1, microRNA-431-5p (miR-431-5p), and transforming growth factor-alpha (TGFA) mRNA were measured by quantitative real-time PCR (qRT-PCR). Cell proliferation was evaluated using colony formation and 5-ethynyl-2’-deoxyuridine (EdU) assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were measured using the transwell assay. The protein levels of ki-67, Bax, matrix metalloproteinase 2 (MMP-2), and TGFA were detected using Western blot assay. The interaction between miR-431-5p and circRTN1 or TGFA was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The effect of circRTN1on TC in vivo was explored via xenograft tumor assay.

Results

The expression of circRTN1 was increased in TC tissues and cells. Knockdown of circRTN1 suppressed TC cell proliferation, migration, and invasion, and increased cell apoptosis. MiR-431-5p was a target of circRTN1, and miR-431-5p downregulation reversed the role of circRTN1 knockdown in TC cells. TGFA was identified as a direct target of miR-431-5p, and miR-431-5p exerted the anti-tumor role in TC cells by downregulating TGFA. Moreover, circRTN1 sponged miR-431-5p to regulate TGFA expression. Furthermore, circRTN1 knockdown inhibited tumor growth in vivo.

Conclusion

CircRTN1 acted as a cancer-promoting circRNA in TC by regulating the miR-431-5p/TGFA axis, providing a potential therapeutic strategy for TC treatment.

Highlights

  • CircRTN1 was highly expressed in thyroid cancer tissues and cells.

  • CircRTN1 knockdown inhibited thyroid cancer progression by sponging miR-431-5p.

  • MiR-431-5p targeted TGFA to exert the anti-cancer role in thyroid cancer cells.

  • CircRTN1 regulated TGFA expression by acting as a sponge of miR-431-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cabanillas ME, McFadden DG, Durante C (2016) Thyroid cancer. Lancet 388:2783–2795

    Article  CAS  PubMed  Google Scholar 

  2. Brito JP, Morris JC, Montori VM (2013) Thyroid cancer: zealous imaging has increased detection and treatment of low risk tumours. BMJ 347:f4706

    Article  PubMed  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  4. Nguyen QT, Lee EJ, Huang MG, Park YI, Khullar A, Plodkowski RA (2015) Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits 8:30–40

    PubMed  PubMed Central  Google Scholar 

  5. De Falco V, Guarino V, Avilla E, Castellone MD, Salerno P, Salvatore G et al (2007) Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res 67:11821–11829

    Article  PubMed  Google Scholar 

  6. Blomberg M, Feldt-Rasmussen U, Andersen KK, Kjaer SK (2012) Thyroid cancer in Denmark 1943–2008, before and after iodine supplementation. Int J Cancer 131:2360–2366

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Liu T, Wang X, He A (2017) Circles reshaping the RNA world: from waste to treasure. Mol Cancer 16:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    Article  CAS  PubMed  Google Scholar 

  9. Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH (2019) CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol 58:90–99

    Article  CAS  PubMed  Google Scholar 

  10. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y et al (2019) The landscape of circular RNA in cancer. Cell 176:869-881.e813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Yan X, Zhang H, Zhan X (2019) CircRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Med Sci Monit 25:1342–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Zheng X, Liu H (2020) Hsa_circ_0102272 serves as a prognostic biomarker and regulates proliferation, migration and apoptosis in thyroid cancer. J Gene Med 22:e3209

    Article  CAS  PubMed  Google Scholar 

  14. Bach DH, Lee SK, Sood AK (2019) Circular RNAs in cancer. Mol Ther Nucleic Acids 16:118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panda AC (2018) Circular RNAs act as miRNA sponges. Adv Exp Med Biol 1087:67–79

    Article  CAS  PubMed  Google Scholar 

  16. Kwan JY, Psarianos P, Bruce JP, Yip KW, Liu FF (2016) The complexity of microRNAs in human cancer. J Radiat Res 57(Suppl 1):i106–i111

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang Q, Cheng L, Ma D, Zhao Y (2019) FBXL19-AS1 exerts oncogenic function by sponging miR-431–5p to regulate RAF1 expression in lung cancer. Biosci Rep 39:BSR20181804

  18. Sun S, Fu L, Wang G, Wang J, Xu L (2020) MicroRNA-431-5p inhibits the tumorigenesis of osteosarcoma through targeting PANX3. Cancer Manag Res 12:8159–8169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wen HL, Xu ZM, Wen D, Lin SY, Liang Y, Xie JP (2020) Long noncoding RNAs SET-binding factor 2-antisense RNA1 promotes cell growth through targeting miR-431-5p/CDK14 axis in human papillary thyroid cancer. Kaohsiung J Med Sci 36:808–816

    Article  CAS  PubMed  Google Scholar 

  20. Wu H, Liu Y, Shu XO, Cai Q (2016) MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression. Carcinogenesis 37:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24:5043–5051

    Article  CAS  PubMed  Google Scholar 

  22. Vuong HG, Long NP, Anh NH, Nghi TD, Hieu MV, Hung LP et al (2018) Papillary thyroid carcinoma with tall cell features is as aggressive as tall cell variant: a meta-analysis. Endocr Connect 7:R286-r293

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murugan AK, Munirajan AK, Alzahrani AS (2018) Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr Relat Cancer 25:R59-r82

    Article  CAS  PubMed  Google Scholar 

  24. Patop IL, Kadener S (2018) circRNAs in cancer. Curr Opin Genet Dev 48:121–127

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shang Q, Yang Z, Jia R, Ge S (2019) The novel roles of circRNAs in human cancer. Mol Cancer 18:6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xia F, Chen Y, Jiang B, Bai N, Li X (2020) Hsa_circ_0011385 accelerates the progression of thyroid cancer by targeting miR-361-3p. Cancer Cell Int 20:49

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shu T, Yang L, Sun L, Lu J, Zhan X (2020) CircHIPK3 promotes thyroid cancer tumorigenesis and invasion through the Mirna-338–3p/RAB23 axis. Med Princ Pract

  29. Wang M, Chen B, Ru Z, Cong L (2018) CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun 504:283–288

    Article  CAS  PubMed  Google Scholar 

  30. Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S (2017) Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 18:780–788

    CAS  PubMed  Google Scholar 

  31. Huang W, Zeng C, Hu S, Wang L, Liu J (2019) ATG3, a target of miR-431-5p, promotes proliferation and invasion of colon cancer via promoting autophagy. Cancer Manag Res 11:10275–10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu YT, Li XX, Zeng LW (2019) Circ_0001742 promotes tongue squamous cell carcinoma progression via miR-431-5p/ATF3 axis. Eur Rev Med Pharmacol Sci 23:10300–10312

    PubMed  Google Scholar 

  33. Felekkis K, Touvana E, Stefanou C, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Zhang A, Bao PP, Lin L, Wang Y, Wu H et al (2021) MicroRNA-374b inhibits breast cancer progression through regulating CCND1 and TGFA genes. Carcinogenesis 42:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Chen L, Tian XD, Zhang T (2017) MiR-137 and its target TGFA modulate cell growth and tumorigenesis of non-small cell lung cancer. Eur Rev Med Pharmacol Sci 21:511–517

    CAS  PubMed  Google Scholar 

  36. Chen S, Sun KX, Liu BL, Zong ZH, Zhao Y (2016) MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer 15:11

    Article  PubMed  PubMed Central  Google Scholar 

  37. Degl’Innocenti D, Alberti C, Castellano G, Greco A, Miranda C, Pierotti MA et al (2010) Integrated ligand-receptor bioinformatic and in vitro functional analysis identifies active TGFA/EGFR signaling loop in papillary thyroid carcinomas. PLoS One 5:e12701

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang.

Ethics declarations

Ethics approval and informed consent

Written informed consent was obtained from all participants. This study was approved by the Ethics Committee of the First Affiliated Hospital of Anhui Medical University Hefei, Anhui, China.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1. The effects of cabozantinib and TSH on the expression of circRTN1

. (A and B) The expression of circRTN1 was detected by qRT-PCR in TPC-1 cells treated with different doses of cabozantinib and TSH (ANOVA). All data are shown as mean ± SD.

High Resolution Image (TIF 168 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, Y., Xu, L. et al. CircRTN1 acts as a miR-431-5p sponge to promote thyroid cancer progression by upregulating TGFA. Hormones 21, 611–623 (2022). https://doi.org/10.1007/s42000-022-00378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-022-00378-7

Keywords

Navigation