Skip to main content

Serum adipokine levels in patients with type 1 diabetes are associated with degree of obesity but only resistin is independently associated with atherosclerosis markers

Abstract

Purpose

The role of adipokines in causing inflammation and insulin resistance in normal weight and obese patients is generally well studied. However, there are often conflicting results regarding their levels in type 1 diabetes mellitus (T1DM) patients and their relationship to micro- and macrovascular disease. We therefore investigated which serum adipokine levels are independently associated with markers of early atherosclerosis and microvascular complications in patients with T1DM.

Methods

A cross-sectional study was performed in the Diabetes Outpatient Clinic of Hippokrateion General Hospital, Thessaloniki, Greece. Sixty T1DM patients (30 females, mean age 38.8 ± 10.6 years, mean diabetes duration 17.4 ± 9.9 years) were included. Plasma adiponectin, leptin, and resistin, carotid artery intima media thickness (cIMT), and arterial stiffness (pulse wave velocity, PWV/SpygmoCor CP System and Mobil-O-Graph 24 h PWA) were assessed.

Results

Leptin and resistin levels were significantly higher in overweight and obese patients (p = 0.002 and p = 0.039, respectively). Adiponectin was the only adipokine negatively correlated with BMI (rs =  − 0.41, p = 0.001). We report a bivariate association between serum adiponectin levels and retinopathy (p = 0.007). Resistin was the only adipokine that showed significant correlation with systolic (rs = 0.42, p = 0.001) and diastolic (rs = 0.29, p = 0.024) hypertension and PWV (p = 0.035).

Conclusions

Serum adipokine levels demonstrate similar bivariate associations with anthropometric variables in patients with T1DM to those in normal weight subjects. Although microvascular complications are associated with serum adipokine levels by bivariate analysis, only resistin, an inflammatory marker, is independently associated with arterial stiffness in patients with T1DM.

This is a preview of subscription content, access via your institution.

Data availability

The datasets generated during the current study are available from the corresponding author on request.

Code availability

Not applicable.

Abbreviations

BMI:

Body mass index

BW:

Body weight

CBP:

Central blood pressure

CCA:

Common carotid artery

cIMT:

Carotid artery intima media thickness

cIMTmax:

Maximum carotid artery intima media thickness

MNSI:

Michigan Neuropathy Screening Instrument

CKD:

Chronic kidney disease

DBP:

Diastolic blood pressure

eGFR:

Estimated glomerular filtration rate

HbA1c:

Glycated hemoglobin

PWV:

Pulse wave velocity

SBP:

Systolic blood pressure

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

UACR:

Urine albumin to creatinine ratio

References

  1. 1.

    Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383:1084–1094. https://doi.org/10.1016/S0140-6736(13)62219-9

    Article  PubMed  Google Scholar 

  2. 2.

    Minges KE, Whittemore R, Grey M (2013) Overweight and obesity in youth with type 1 diabetes. Annu Rev Nurs Res 31:47–69. https://doi.org/10.1891/0739-6686.31.47

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Xu P, Cuthbertson D, Greenbaum C, Palmer JP, Krischer JP, Diabetes Prevention Trial-Type 1 Study Group (2007) Role of insulin resistance in predicting progression to type 1 diabetes. Diabetes Care 30:2314–2320. https://doi.org/10.2337/dc06-2389

    Article  Google Scholar 

  4. 4.

    Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC (2004) Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47:1661–1667. https://doi.org/10.1007/s00125-004-1507-3

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Athyros V, Tziomalos K, Karagiannis A, Anagnostis P, Mikhailidis D, Fiorino G, Rovida S, Correale C, Malesci A, Danese S (2009) Should adipokines be considered in the choice of the treatment of obesity-related health problems? Curr Drug Targets 11:122–135. https://doi.org/10.2174/138945010790030992

    Article  Google Scholar 

  6. 6.

    Yoo HJ (2014) Adipokines as a novel link between obesity and atherosclerosis. World J Diabetes 5:357. https://doi.org/10.4239/wjd.v5.i3.357

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    (2015) Standards of medical care in diabetes-2015. https://doi.org/10.2337/dc15-S001

  8. 8.

    Association AD (2021) 11. Microvascular complications and foot care: standards of medical care in diabetes—2021. Diabetes Care 44:S151–S167. https://doi.org/10.2337/DC21-S011

    Article  Google Scholar 

  9. 9.

    Berukstis A, Jarasunas J, Daskeviciute A, Ryliskyte L, Baranauskas A, Steponeniene R, Laucevicius A (2019) How to interpret 24-h arterial stiffness markers: comparison of 24-h ambulatory Mobil-O-Graph with SphygmoCor office values. Blood Press Monit 24:93–98. https://doi.org/10.1097/MBP.0000000000000369

    Article  PubMed  Google Scholar 

  10. 10.

    Kumar R, Mal K, Razaq MK, Magsi M, Memon MK, Memon S, Afroz MN, Siddiqui HF, Rizwan A (2020) Association of leptin with obesity and insulin resistance. Cureus 12.https://doi.org/10.7759/cureus.12178

  11. 11.

    Park H-KK, Ahima RS (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 64:24–34. https://doi.org/10.1016/j.metabol.2014.08.004

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim S-Y, Hamnvik O-PR, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584. https://doi.org/10.1152/ajpendo.00315.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    S. Popovic D, Sekerus V (2016) Levels of different adipocytokines in chronic complications of type 1 diabetes mellitus. Integr Obes Diabetes 2: . https://doi.org/10.15761/IOD.1000156

  14. 14.

    Verrotti A, Basciani F, De Simone M, Morgese G, Chiarelli F (2000) Leptin concentration in non-obese and obese children with type 1 diabetes mellitus. Biomed Pharmacother 54:69–73. https://doi.org/10.1016/S0753-3322(00)88854-X

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Majewska KA, Majewski D, Skowrońska B, Stankiewicz W, Fichna P (2015) Serum leptin and adiponectin levels in children with type 1 diabetes mellitus - relation to body fat mass and disease course. Adv Med Sci 61:117–122. https://doi.org/10.1016/j.advms.2015.10.002

    Article  PubMed  Google Scholar 

  16. 16.

    Kiess W, Anil M, Blum WF, Englaro P, Juul A, Attanasio A, Dötsch J, Rascher W (1998) Serum leptin levels in children and adolescents with insulin-dependent diabetes mellitus in relation to metabolic control and body mass index. Eur J Endocrinol 138:501–509

    Article  CAS  Google Scholar 

  17. 17.

    Greco AV, Mingrone G, Giancaterini A, Manco M, Morroni M, Cinti S, Granzotto M, Vettor R, Camastra S, Ferrannini E (2002) Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes 51:144–151. https://doi.org/10.2337/diabetes.51.1.144

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Gil-Campos M, Cañete R, Gil A (2004) Hormones regulating lipid metabolism and plasma lipids in childhood obesity. Int J Obes 28:S75–S80. https://doi.org/10.1038/sj.ijo.0802806

    Article  CAS  Google Scholar 

  19. 19.

    Cui J, Panse S, Falkner B (2011) The role of adiponectin in metabolic and vascular disease: a review. Clin Nephrol 75:26–33

    PubMed  CAS  Google Scholar 

  20. 20.

    Galler A, Gelbrich G, Kratzsch J, Noack N, Kapellen T, Kiess W (2007) Elevated serum levels of adiponectin in children, adolescents and young adults with type 1 diabetes and the impact of age, gender, body mass index and metabolic control: a longitudinal study. Eur J Endocrinol 157:481–489. https://doi.org/10.1530/EJE-07-0250

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Blaslov K, Bulum T, Zibar K, Duvnjak L (2013) Relationship between adiponectin level, insulin sensitivity, and metabolic syndrome in type 1 diabetic patients. Int J Endocrinol 2013:535906. https://doi.org/10.1155/2013/535906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Kishida K, Kim KK, Funahashi T, Matsuzawa Y, Kang H-C, Shimomura I (2011) Relationships between circulating adiponectin levels and fat distribution in obese subjects. J Atheroscler Thromb 18:592–595. https://doi.org/10.5551/jat.7625

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46:459–469. https://doi.org/10.1007/s00125-003-1074-z

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB (2005) Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J Clin Endocrinol Metab 90:4542–4548. https://doi.org/10.1210/jc.2005-0372

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Sabbatini AR, Fontana V, Laurent S, Moreno H (2015) An update on the role of adipokines in arterial stiffness and hypertension. J Hypertens 33:435–444. https://doi.org/10.1097/HJH.0000000000000444

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Van de Voorde J, Pauwels B, Boydens C, Decaluwé K (2013) Adipocytokines in relation to cardiovascular disease. Metabolism 62:1513–1521. https://doi.org/10.1016/j.metabol.2013.06.004

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Kim DH, Kim C, Ding EL, Townsend MK, Lipsitz LA (2013) Adiponectin levels and the risk of hypertension. Hypertension 62:27–32. https://doi.org/10.1161/HYPERTENSIONAHA.113.01453

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935. https://doi.org/10.1210/jcem.86.5.7463

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26:2442–2450

    Article  CAS  Google Scholar 

  30. 30.

    Fu Z, Gong Y, Löfqvist C, Hellström A, Smith LEH (2016) Review: adiponectin in retinopathy. Biochim Biophys Acta - Mol Basis Dis 1862:1392–1400

    Article  CAS  Google Scholar 

  31. 31.

    Hadjadj S, Aubert R, Fumeron F, Pean F, Tichet J, Roussel R, Marre M (2005) Increased plasma adiponectin concentrations are associated with microangiopathy in type 1 diabetic subjects. Diabetologia 48:1088–1092. https://doi.org/10.1007/s00125-005-1747-x

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Ferreira-Hermosillo A, Molina-Ayala M, Ramírez-Rentería C, Vargas G, Gonzalez B, Isibasi A, Archundia-Riveros I, Mendoza V (2015) Inflammatory cytokine profile associated with metabolic syndrome in adult patients with type 1 diabetes. J Diabetes Res 2015:972073. https://doi.org/10.1155/2015/972073

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Redondo MJ, Rodriguez LM, Haymond MW, Hampe CS, Smith EO, Balasubramanyam A, Devaraj S (2014) Serum adiposity-induced biomarkers in obese and lean children with recently diagnosed autoimmune type 1 diabetes. Pediatr Diabetes 15:543–549. https://doi.org/10.1111/pedi.12159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Schäffler A, Büchler C, Müller-Ladner U, Herfarth H, Ehling A, Paul G, Schölmerich J, Zietz B (2004) Identification of variables influencing resistin serum levels in patients with type 1 and type 2 diabetes mellitus. Horm Metab Res 36:702–707. https://doi.org/10.1055/s-2004-826015

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Fehmann H-C, Heyn J (2002) Plasma resistin levels in patients with type 1 and type 2 diabetes mellitus and in healthy controls. Horm Metab Res 34:671–673. https://doi.org/10.1055/s-2002-38241

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Takata Y, Osawa H, Kurata M, Kurokawa M, Yamauchi J, Ochi M, Nishida W, Okura T, Higaki J, Makino H (2008) Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes. Hypertension 51:534–539. https://doi.org/10.1161/HYPERTENSIONAHA.107.103077

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Thomopoulos C, Daskalaki M, Papazachou O, Rodolakis N, Bratsas A, Papadopoulos DP, Papavasileiou MV, Perrea D, Makris T (2011) Association of resistin and adiponectin with different clinical blood pressure phenotypes. J Hum Hypertens 25:38–46. https://doi.org/10.1038/jhh.2010.22

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Zhang Y, Li Y, Yu L, Zhou L (2017) Association between serum resistin concentration and hypertension: a systematic review and meta-analysis. Oncotarget 8:41529–41537. https://doi.org/10.18632/oncotarget.17561

  39. 39.

    Papadopoulos DP, Makris TK, Perrea D, Papazachou O, Daskalaki M, Sanidas E, Votteas V (2008) Adiponectin – insulin and resistin plasma levels in young healthy offspring of patients with essential hypertension. Blood Press 17:50–54. https://doi.org/10.1080/08037050701876307

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Zhang L, Curhan GC, Forman JP (2010) Plasma resistin levels associate with risk for hypertension among nondiabetic women. J Am Soc Nephrol 21:1185–1191. https://doi.org/10.1681/ASN.2009101053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Kawamura R, Doi Y, Osawa H, Ninomiya T, Hata J, Yonemoto K, Tanizaki Y, Iida M, Makino H, Kiyohara Y (2010) Circulating resistin is increased with decreasing renal function in a general Japanese population: the Hisayama study. Nephrol Dial Transplant 25:3236–3240. https://doi.org/10.1093/ndt/gfq155

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Tsioufis C, Dimitriadis K, Selima M, Miliou A, Toutouzas K, Roussos D, Stefanadi E, Tousoulis D, Kallikazaros I, Stefanadis C (2010) Association of resistin with urinary albumin excretion in nondiabetic patients with essential hypertension. Am J Hypertens 23:681–686. https://doi.org/10.1038/ajh.2010.34

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Cebeci E, Cakan C, Gursu M, Uzun S, Karadag S, Koldas M, Calhan T, Helvaci S, Ozturk S (2019) The main determinants of serum resistin level in type 2 diabetic patients are renal function and inflammation not presence of microvascular complication, obesity and insulin resistance. Exp Clin Endocrinol Diabetes 127:189–194. https://doi.org/10.1055/s-0043-121262

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Bulum T, Vučić Lovrenčić M, Tomić M, Vučković-Rebrina S, Roso V, Kolarić B, Vuksan V, Duvnjak L (2019) Serum adipocytokines are associated with microalbuminuria in patients with type 1 diabetes and incipient chronic complications. Diabetes Metab Syndr Clin Res Rev 13:496–499. https://doi.org/10.1016/j.dsx.2018.11.001

    Article  Google Scholar 

  45. 45.

    Menzaghi C, Salvemini L, Fini G, Thompson R, Mangiacotti D, Di Paola R, Morini E, Giorelli M, De Bonis C, De Cosmo S, Doria A, Trischitta V (2012) Serum resistin and kidney function: a family-based study in non-diabetic, untreated individuals. PLoS ONE 7:e38414. https://doi.org/10.1371/journal.pone.0038414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Tziomalos K, Athyros V, Karagiannis A (2014) Treating arterial stiffness in young and elderly patients with the metabolic syndrome. Curr Pharm Des 20:6106–6113. https://doi.org/10.2174/1381612820666140417101523

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Csongrádi É, Káplár M, Nagy B, Koch CA, Juhász A, Bajnok L, Varga Z, Seres I, Karányi Z, Magyar MT, Oláh L, Facskó A, Kappelmayer J, Paragh G (2017) Adipokines as atherothrombotic risk factors in obese subjects: associations with haemostatic markers and common carotid wall thickness. Nutr Metab Cardiovasc Dis 27:571–580. https://doi.org/10.1016/j.numecd.2017.02.007

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN (2013) Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 227:216–221. https://doi.org/10.1016/j.atherosclerosis.2012.12.029

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Atabek ME, Kurtoglu S, Demir F, Baykara M (2004) Relation of serum leptin and insulin-like growth factor-1 levels to intima-media thickness and functions of common carotid artery in children and adolescents with type 1 diabetes. Acta Paediatr 93:1052–1057

    Article  CAS  Google Scholar 

  50. 50.

    Yazıcı D, Yavuz D, Öğünç AV, Şirikçi Ö, Toprak A, Deyneli O, Akalın S (2012) Serum adipokine levels in type 1 diabetic patients: association with carotid intima media thickness. Metab Syndr Relat Disord 10:26–31. https://doi.org/10.1089/met.2011.0052

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Shah AS, Dolan LM, Lauer A, Davis C, Dabelea D, Daniels SR, Hamman RF, Marcovina S, Wadwa RP, Urbina EM (2012) Adiponectin and arterial stiffness in youth with type 1 diabetes: the SEARCH for diabetes in youth study. J Pediatr Endocrinol Metab 25:717–721. https://doi.org/10.1515/jpem-2012-0070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Alman AC, Talton JW, Wadwa RP, Urbina EM, Dolan LM, Hamman RF, D’Agostino RB, Marcovina SM, Dabelea DM (2018) Inflammation, adiposity, and progression of arterial stiffness in adolescents with type 1 diabetes: the SEARCH CVD study. J Diabetes Complications 32:995–999. https://doi.org/10.1016/j.jdiacomp.2018.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ruscica M, Baragetti A, Catapano AL, Norata GD (2017) Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: gaps and open questions. Nutr Metab Cardiovasc Dis 27:379–395. https://doi.org/10.1016/j.numecd.2016.12.005

Download references

Acknowledgements

We wish to thank all volunteers who participated in this trial.

Funding

This work was supported by the Northern Greece Diabetes Association.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erieta Kollari.

Ethics declarations

Ethics approval

The study was conducted in accordance with the principles of the Declaration of Helsinki and was approved by the Ethics in Research Committee of the School of Public Health of the Aristotle University of Thessaloniki.

Consent to participate

All participants provided written informed consent.

Consent for publication

All authors read and approved the final manuscript before submission.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 180 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kollari, E., Zografou, I., Sampanis, C. et al. Serum adipokine levels in patients with type 1 diabetes are associated with degree of obesity but only resistin is independently associated with atherosclerosis markers. Hormones (2021). https://doi.org/10.1007/s42000-021-00328-9

Download citation

Keywords

  • Leptin
  • Adiponectin
  • Resistin
  • cIMT
  • PWV