Skip to main content

Emotional intelligence scores in children and adolescents with subclinical hypothyroidism—correlation with serum serotonin and thyroid-stimulating hormone (TSH) concentrations

Abstract

Introduction

Thyroxine is essential for nervous system development. Subclinical hypothyroidism (SCH), also known as mild thyroid failure, is associated with impaired cognitive function in children and mood disorders in adults. Serotonin is also involved in brain development as well as in mood and behavior modulation. The possible interaction between thyroid function tests, serum serotonin concentrations, and emotional intelligence (EI) was studied.

Methods

A total of 224 schoolchildren from the Peloponnese, Greece, aged 11–19, were included in the study, of whom 26.3% had SCH. Emotional quotients (EQ), such as well-being, self-control, emotionality, and sociability, were assessed using the TEIQue-ASF questionnaire, and TSH, fT4, and serum serotonin concentrations were also evaluated.

Results

Children and adolescents with SCH had a lower EQ total score (p < 0.001), EQ well-being score (p = 0.025), EQ self-control score (p = 0.029), EQ emotionality score (p = 0.029), and EQ sociability score (p = 0.010) and lower serum serotonin concentrations (p < 0.001).

Conclusions

Children and adolescents with SCH exhibited lower EI scores and lower serum serotonin concentrations when compared with age-matched healthy controls.

This is a preview of subscription content, access via your institution.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Smith JW, Evans AT, Costall B, Smythe JW (2002) Thyroid hormones, brain function and cognition: a brief review. Neurosci Biobehav Rev 26(1):45–60. https://doi.org/10.1016/S0149-7634(01)00037-9

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bernal J, Nunez J (1995) Thyroid hormones and brain development. Eur J Endocrinol 133(4):390–398. https://doi.org/10.1530/eje.0.1330390

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Komur M, Ozen S, Okuyaz C, Makharoblıdze K, Erdogan S (2013) Neurodevelopment evaluation in children with congenital hypothyroidism by Bayley-III. Brain Develop 35(5):392–397. https://doi.org/10.1016/j.braindev.2012.07.003

    Article  Google Scholar 

  4. 4.

    Mohamed HM, Zaki E, Abdall AAB, Gomaa MA, Wahab MMA (2017) Language disorders in children with congenital hypothyroidism. The Egyptian Journal of Otolaryngology 33(4):685–690. https://doi.org/10.4103/1012-5574.217383

    Article  Google Scholar 

  5. 5.

    Davis J, Tremont G (2007) Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrinol 32:49–65

    CAS  PubMed  Google Scholar 

  6. 6.

    Biondi B, Cooper DS (2008) The clinical significance of subclinical thyroid dysfunction. Endocr Rev 29(1):76–131. https://doi.org/10.1210/er.2006-0043

    CAS  Article  Google Scholar 

  7. 7.

    Lazar L, Frumkin RB-D, Battat E, Lebenthal Y, Phillip M, Meyerovitch J (2009) Natural history of thyroid function tests over 5 years in a large pediatric cohort. J Clin Endocrinol Metab 94(5):1678–1682. https://doi.org/10.1210/jc.2008-2615

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Wolters B, Lass N, Reinehr T (2012) TSH and free triiodothyronine concentrations are associated with weight loss in a lifestyle intervention and weight regain afterwards in obese children. Eur J Endocrinol/Eur Fed Endocr Soc 168:323–329. https://doi.org/10.1530/EJE-12-0981

  9. 9.

    Kostopoulou E, Spiliotis B (2018) Severe constipation and growth impairment in a child with subclinical hypothyroidism. levothyroxine proven to be beneficial. Endocrinol Metab Int J 6:391–393. https://doi.org/10.15406/emij.2018.06.00218

  10. 10.

    Ittermann T, Thamm M, Wallaschofski H, Rettig R, Völzke H (2012) Serum thyroid-stimulating hormone levels are associated with blood pressure in children and adolescents. J Clin Endocrinol Metab 97(3):828–834. https://doi.org/10.1210/jc.2011-2768

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhang J, Jiang R, Li L, Li P, Li X, Wang Z, Li L, Teng W (2014) Serum thyrotropin is positively correlated with the metabolic syndrome components of obesity and dyslipidemia in Chinese adolescents. Int J Endocrinol 2014:289503. https://doi.org/10.1155/2014/289503

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fallah R, Mirouliaei M, Bashardoost N, Partovee M (2012) Frequency of subclinical hypothyroidism in 5- to 15-year-old children with migraine headache. J Pediatr Endocrinol Metab 25(9–10):859–862. https://doi.org/10.1515/jpem-2012-0121

    Article  PubMed  Google Scholar 

  13. 13.

    Rapa A, Monzani A, Moia S, Vivenza D, Bellone S, Petri A, Teofoli F, Cassio A, Cesaretti G, Corrias A, de Sanctis V, Di Maio S, Volta C, Wasniewska M, Tatò L, Bona G (2009) Subclinical Hypothyroidism in children and adolescents: a wide range of clinical, biochemical, and genetic factors involved. J Clin Endocrinol Metab 94(7):2414–2420. https://doi.org/10.1210/jc.2009-0375

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Capalbo D, Alfano S, Polizzi M, Di Mase R, Improda N, Esposito A, Bravaccio C, Salerno M (2020) Cognitive function in children with idiopathic subclinical hypothyroidism: effects of 2 years of levothyroxine therapy. J Clin Endocrinol Metab 105(3):e774–e781. https://doi.org/10.1210/clinem/dgaa046

    Article  Google Scholar 

  15. 15.

    Brummelte S, McGlanaghy E, Bonnin A, Oberlander TF (2017) Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience 342:212–231. https://doi.org/10.1016/j.neuroscience.2016.02.037

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Whitaker-Azmitia PM, Druse M, Walker P, Lauder JM (1995) Serotonin as a developmental signal. Behav Brain Res 73(1):19–29. https://doi.org/10.1016/0166-4328(96)00071-X

    CAS  Article  Google Scholar 

  17. 17.

    Bonnin A, Torii M, Wang L, Rakic P, Levitt P (2007) Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10(5):588–597. https://doi.org/10.1038/nn1896

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445. https://doi.org/10.1038/nrn2639

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Homberg JR, Contet C (2009) Deciphering the interaction of the corticotropin-releasing factor and serotonin brain systems in anxiety-related disorders. J Neurosci 29(44):13743–13745. https://doi.org/10.1523/JNEUROSCI.4362-09.2009%J

  20. 20.

    Saldanha D, Kumar N, Ryali V, Srivastava K, Pawar AA (2009) Serum serotonin abnormality in depression. Med J Armed Forces India 65(2):108–112. https://doi.org/10.1016/S0377-1237(09)80120-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wakayama K, Ohtsuki S, Takanaga H, Hosoya K-i, Terasaki T (2002) Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci Res 44:173–180. Neurosci Res 44:173–180. https://doi.org/10.1016/S0168-0102(02)00120-7

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Berger M, Gray J, Roth B (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366. https://doi.org/10.1146/annurev.med.60.042307.110802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Namkung J, Kim H, Park S (2015) Peripheral Serotonin: a New Player in Systemic Energy Homeostasis. Mol Cells 38:1023–1028. https://doi.org/10.14348/molcells.2015.0258

  24. 24.

    Kee KS, Horan WP, Salovey P, Kern RS, Sergi MJ, Fiske AP, Lee J, Subotnik KL, Nuechterlein K, Sugar CA, Green MF (2009) Emotional intelligence in schizophrenia. Schizophr Res 107(1):61–68. https://doi.org/10.1016/j.schres.2008.08.016

    Article  PubMed  Google Scholar 

  25. 25.

    Barbey AK, Colom R, Paul EJ, Chau A, Solomon J, Grafman JH (2014) Lesion mapping of social problem solving. Brain 137(10):2823–2833. https://doi.org/10.1093/brain/awu207

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Brackett M, Rivers S, Shiffman S, Lerner N, Salovey P (2006) Relating emotional abilities to social functioning: a comparison of self-report and performance measures of Emotional Intelligence. J Pers Soc Psychol 91:780–795. https://doi.org/10.1037/0022-3514.91.4.780

    Article  PubMed  Google Scholar 

  27. 27.

    Rivers SE, Brackett MA, Reyes MR, Mayer JD, Caruso DR, Salovey P (2012) Measuring emotional intelligence in early adolescence with the MSCEIT-YV:psychometric properties and relationship with academic performance and psychosocial functioning. J Psychoeduc Assess 30(4):344–366. https://doi.org/10.1177/0734282912449443

  28. 28.

    Salovey P, Grewal D (2005) The Science of Emotional Intelligence. Curr Dir Psychol Sci 14(6):281–285. https://doi.org/10.1111/j.0963-7214.2005.00381.x

    Article  Google Scholar 

  29. 29.

    Mikolajczak M, Menil C, Luminet O (2007) Explaining the protective effect of trait emotional intelligence regarding occupational stress: Exploration of emotional labour processes. J Res Pers 41(5):1107–1117. https://doi.org/10.1016/j.jrp.2007.01.003

    Article  Google Scholar 

  30. 30.

    Wartofsky L, Dickey RA (2005) The evidence for a narrower thyrotropin reference range is compelling. J Clin Endocrinol Metab 90(9):5483–5488. https://doi.org/10.1210/jc.2005-0455

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Mussa A, Salerno MC, Bona G, Wasniewska M, Segni M, Cassio A, Vigone MC, Gastaldi R, Iughetti L, Santanera A, Capalbo D, Matarazzo P, De Luca F, Weber G, Corrias A (2013) Serum thyrotropin concentration in children with isolated thyroid nodules. J Pediatr 163(5):1465–1470. https://doi.org/10.1016/j.jpeds.2013.07.003

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Reyes C, Brackett M, Rivers S, White M, Salovey P (2012) Classroom emotional climate, student engagement, and academic achievement. J Educ Psychol 104:700–712. https://doi.org/10.1037/a0027268

    Article  Google Scholar 

  33. 33.

    Petrides KV, Pita R, Kokkinaki F (2007) The location of trait emotional intelligence in personality factor space. Br J Psychol 98:273–289. https://doi.org/10.1348/000712606X120618

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Stamatopoulou M, Galanis P, Tzavella F, Petrides KV, Prezerakos P (2018) Trait emotional intelligence questionnaire-adolescent short form: a psychometric investigation in Greek context. J Psychoeduc Assess 36(5):436–445. https://doi.org/10.1177/0734282916687706

    Article  Google Scholar 

  35. 35.

    Petrides KV (2009) Psychometric properties of the Trait Emotional Intelligence Questionnaire (TEIQue). In: Parker J, Saklofske D, Stough C (eds) Assessing emotional intelligence. The Springer series on human exceptionality. Springer, Boston. https://doi.org/10.1007/978-0-387-88370-0_5

  36. 36.

    Schneider A, Hommel G, Blettner M (2010) Linear regression analysis Part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int 107:776–782. https://doi.org/10.3238/arztebl.2010.0776

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kratzsch J, Fiedler GM, Leichtle A, Brügel M, Buchbinder S, Otto L, Sabri O, Matthes G, Thiery J (2005) New reference intervals for thyrotropin and thyroid hormones based on National Academy of Clinical Biochemistry criteria and regular ultrasonography of the thyroid. Clin Chem 51(8):1480–1486. https://doi.org/10.1373/clinchem.2004.047399

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Völzke H, Alte D, Kohlmann T, Lüdemann J, Nauck M, John U, Meng W (2005) Reference intervals of serum thyroid function tests in a previously iodine-deficient area. Thyroid Off J Am Thyroid Assoc 15(3):279–285. https://doi.org/10.1089/thy.2005.15.279

    Article  Google Scholar 

  39. 39.

    Rack SK, Makela EH (2000) Hypothyroidism and depression: a therapeutic. Challenge 34(10):1142–1145. https://doi.org/10.1345/aph.10022

    CAS  Article  Google Scholar 

  40. 40.

    Panicker V, Evans J, Bjøro T, Åsvold BO, Dayan CM, Bjerkeset O (2009) A paradoxical difference in relationship between anxiety, depression and thyroid function in subjects on and not on T4: findings from the HUNT study. Clin Endocrinol 71(4):574–580. https://doi.org/10.1111/j.1365-2265.2008.03521.x

  41. 41.

    Beydoun MA, Beydoun HA, Kitner-Triolo MH, Kaufman JS, Evans MK, Zonderman AB (2013) Thyroid hormones are associated with cognitive function: moderation by sex, race, and depressive symptoms. J Clin Endocrinol Metab 98(8):3470–3481. https://doi.org/10.1210/jc.2013-1813

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zhao T, Chen B, Zhao X, Shan Z (2018) Subclinical hypothyroidism and depression: a meta-analysis. Transl Psychiatry 8:239. https://doi.org/10.1038/s41398-018-0283-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hokkanen L, Launes J, Michelsson K (2014) Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates—a 30 year prospective follow-up study. PeerJ 2:e294. https://doi.org/10.7717/peerj.294

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kanike N, Davis A, Shekhawat P (2017) Transient hypothyroidism in the newborn: to treat or not to treat. Translat Pediatr 6:349–358. https://doi.org/10.21037/tp.2017.09.07

    Article  Google Scholar 

  45. 45.

    Dayan P, Huys QJ (2009) Serotonin in affective control. Annu Rev Neurosci 32:95–126. https://doi.org/10.1146/annurev.neuro.051508.135607

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Meyer J (2007) Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci JPN 32:86–102

    PubMed  Google Scholar 

  47. 47.

    Albert P, Benkelfat C (2013) The neurobiology of depression–revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos Trans R Soc Lond B Biol Sci 368:20120535. https://doi.org/10.1098/rstb.2012.0535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Petersen IT, Bates JE, Goodnight JA, Dodge KA, Lansford JE, Pettit GS, Latendresse SJ, Dick DM (2012) Interaction between serotonin transporter polymorphism (5-HTTLPR) and stressful life events in adolescents’ trajectories of anxious/depressed symptoms. Dev Psychol 48(5):1463–1475. https://doi.org/10.1037/a0027471

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cleare AJ (1997) Reduced whole blood serotonin in major depression. Depress Anxiety 5: 108-111. Depress Anxiety 5:108–111. https://doi.org/10.1002/(SICI)1520-6394(1997)5:23.0.CO;2-B

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Collins C, Kloek J, Elliott M (2012) Parallel changes in serotonin levels in brain and blood following acute administration of MDMA. J Psychopharmacol (Oxford, England) 27:109–112. https://doi.org/10.1177/0269881112463123

  51. 51.

    Kim SJ, Kang JI, Namkoong K, Song DH (2011) The effects of serotonin transporter promoter and monoamine oxidase A gene polymorphisms on trait emotional intelligence. Neuropsychobiology 64(4):224–230. https://doi.org/10.1159/000327705

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Koven NS, Demers LA (2014) Discordant peripheral levels of brain-derived neurotrophic factor and serotonin are associated with enhanced emotional intelligence in men. Psychol Neurosci 7(4):609–618. https://doi.org/10.3922/j.psns.2014.4.21

    Article  Google Scholar 

  53. 53.

    Deza-Araujo Y, Baez Lugo S, Vuilleumier P, Chocat A, Chételat G, Poisnel G, Klimecki O (2021) Whole blood serotonin levels in healthy elderly are negatively associated with the functional activity of emotion-related brain regions. Biol Psychol 160:108051. https://doi.org/10.1016/j.biopsycho.2021.108051

    Article  PubMed  Google Scholar 

  54. 54.

    Hughes C, Petty F, Sheikha S, Kramer G (1996) Whole-blood serotonin in children and adolescents with mood and behavior disorders. Psychiatry Res 65:79–95. https://doi.org/10.1016/S0165-1781(96)02932-0

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Twitchell G, Hanna G, Cook E, Fitzgerald H, Zucker R (2000) Serotonergic function, behavioral disinhibition, and negative affect in children of alcoholics: the moderating effects of puberty. Alcohol Clin Exp Res 24:972–979. https://doi.org/10.1111/j.1530-0277.2000.tb04639.x

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Lin SH, Lee LT, Yang YK (2014) Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci Off Sci J Korean Coll Neuropsychopharmacol 12(3):196–202. https://doi.org/10.9758/cpn.2014.12.3.196

    CAS  Article  Google Scholar 

  57. 57.

    Duval F, Mokrani M-C, Bailey P, Correa H, Diep T-S, Crocq M-A, Macher J-P (1999) Thyroid axis activity and serotonin function in major depressive episode. Psychoneuroendocrinology 24(7):695–712. https://doi.org/10.1016/S0306-4530(99)00022-0

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Bauer M, Heinz A, Whybrow PC (2002) Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol Psychiatry 7(2):140–156. https://doi.org/10.1038/sj.mp.4000963

    CAS  Article  Google Scholar 

  59. 59.

    Bauer MS, Whybrow PC (1990) rapid cycling bipolar affective disorder: II. Treatment of refractory rapid cycling with high-dose levothyroxine: a preliminary study. Arch Gen Psychiatry 47(5):435–440. https://doi.org/10.1001/archpsyc.1990.01810170035006

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Imam S, Ahmad SI (2016) Thyroid disorders: basic science and clinical practice. Springer International Publishing Switzerland, Cham. https://doi.org/10.1007/978-3-319-25871-3

Download references

Acknowledgements

We would like to thank all the respondents who dedicated their time to participate in this survey.

Author information

Affiliations

Authors

Contributions

George Κ Arianas Eirini Kostopoulou, Bessie E. Spiliotis, and Andrea Paola Rojas contributed to the conception, design, and completion of the study, as well as the preparation of the final manuscript considered for publication. Christos Chiotis Anastasios Ioannidis and Panagiotis Prezerakos contributed to the acquisition, analysis, and interpretation of data. Ioannis Dimopoulos performed the statistical analysis. Andrea Paola Rojas confirms that she had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All the authors contributed to either the drafting of the manuscript or its critical revision. They also gave final approval of this version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Andrea Paola Rojas Gil.

Ethics declarations

Ethical approval

The study was in accordance to the Declaration of Helsinki (1964) and was approved by the Ethics Committee of the Department of Nursing, University of Peloponnese, Greece. No animal studies were carried out by the authors for this article.

Conflict of interest

George Κ Arianas, Eirini Kostopoulou, Anastasios Ioannidis, Ioannis Dimopoulos, Christos Chiotis, Panagiotis Prezerakos, Bessie E. Spiliotis, and Andrea Paola Rojas Gil have no conflict of interest to disclose.

Informed consent

The current research involved the participation of human subjects. To partake in the study, individuals gave their informed consent in a written format, while participation was voluntary and anonymity was assured.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arianas, G.Κ., Kostopoulou, E., Ioannidis, A. et al. Emotional intelligence scores in children and adolescents with subclinical hypothyroidism—correlation with serum serotonin and thyroid-stimulating hormone (TSH) concentrations. Hormones (2021). https://doi.org/10.1007/s42000-021-00320-3

Download citation

Keywords

  • Subclinical hypothyroidism
  • Emotional intelligence
  • TSH
  • Serotonin