Skip to main content

Vascular effects following intensification of glycemic control in poorly controlled patients with long-standing type 2 diabetes mellitus

Abstract

Purpose

The aim of the present study was to investigate the effect of intensive antidiabetic therapy on vascular indices in type 2 diabetes mellitus (T2DM) patients.

Methods

Poorly controlled T2DM patients (n = 62, mean age 64 years, T2DM duration 14 years, HbA1c ≥ 7.5%) were studied at baseline and following intensive treatment to achieve optimal glycemic control. Brachial artery flow–mediated dilation, carotid-femoral pulse wave velocity, central augmentation index, large and small (C2) artery compliance, carotid intima-media thickness (cIMT), and ankle-brachial index were assessed at baseline and follow-up.

Results

HbA1c decreased from 8.8% (8.1, 10.1) (median, interquartile range-IQ) to 7.4% (6.9, 7.8), p < 0.001. Triglycerides and high-sensitivity C-reactive protein levels were decreased by ~ 10% and 50%, respectively (p < 0.05). Maximum cIMT and C2 increased at follow-up (0.97 ± 0.25 to 1.03 ± 0.27 mm and 3.3 (2.7, 4.2) to 4.2 (3.2, 5.4) ml/mmHg × 10, respectively, p < 0.05). In subgroup analysis, the observed changes in vascular indices were not affected by diabetes duration, presence of cardiovascular disease, or insulin treatment.

Conclusion

In patients with long-standing T2DM, short-term aggressive glycemic control was associated with an improvement of microvascular function (C2) and deterioration of carotid atherosclerosis (IMT) without any effect on the elastic properties of large arteries.

This is a preview of subscription content, access via your institution.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. 1.

    Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of Hyperglycemia in Type 2 Diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41(12):2669–2701. https://doi.org/10.2337/dci18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet 354(9179): 617–621

  3. 3.

    Skyler JS, Bergenstal R, Bonow RO et al (2009) Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care 32(1):187–192. https://doi.org/10.2337/dc08-9026

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev 22(1):36–52. https://doi.org/10.1210/edrv.22.1.0417

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Vlachopoulos C, Xaplanteris P, Aboyans V et al (2015) The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 241(2):507–532. https://doi.org/10.1016/j.atherosclerosis.2015.05.007

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Cheung N, Wang JJ, Klein R et al (2007) Diabetic retinopathy and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study [published correction appears in Diabetes Care 2007 Oct;30(10):2762]. Diabetes Care 30(7):1742–1746. https://doi.org/10.2337/dc07-0264

    Article  PubMed  Google Scholar 

  7. 7.

    Defeudis G, Gianfrilli D, Di Emidio C et al (2015) Erectile dysfunction and its management in patients with diabetes mellitus. Rev Endocr Metab Disord 16:213–231. https://doi.org/10.1007/s11154-015-9321-4

    CAS  Article  Google Scholar 

  8. 8.

    Montorsi P, Ravagnani PM, Galli S et al (2005) Association between erectile dysfunction and coronary artery disease: a case report study. J Sex Med 2(4):575–582. https://doi.org/10.1111/j.1743-6109.2005.00084.x

    Article  PubMed  Google Scholar 

  9. 9.

    Papathanassiou K, Naka KK, Kazakos N et al (2009) Pioglitazone vs glimepiride: differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis 205(1):221–226. https://doi.org/10.1177/1479164111424515

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Mather KJ, Verma S, Anderson TJ (2001) Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 37(5):1344–1350. https://doi.org/10.1016/s0735-1097(01)01129-9

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Vehkavaara S, Yki-Jarvinen H (2004) 3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol 24(2):325–330. https://doi.org/10.1161/01.ATV.0000113817.48983.c5

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Bagg W, Whalley GA, Gamble G et al (2001) Effects of improved glycaemic control on endothelial function in patients with type 2 diabetes. Intern Med J 31(6):322–328. https://doi.org/10.1136/bmj.d6898

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Chugh SN, Dabla S, Jain V et al (2010) Evaluation of endothelial function and effect of glycemic control (excellent v.s poor/fair control) on endothelial function in uncontrolled type 2 diabetes mellitus. J Assoc Physicians India 58:478–480

    CAS  PubMed  Google Scholar 

  14. 14.

    Batzias K, Antonopoulos AS, Oikonomou E et al (2018) Effects of newer antidiabetic drugs on endothelial function and arterial stiffness: a systematic review and meta-analysis. J Diabetes Res 2018:1232583. https://doi.org/10.1155/2018/1232583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Naka KK, Papathanassiou K, Bechlioulis A et al (2012) Determinants of vascular function in patients with type 2 diabetes. Cardiovasc Diabetol 11:127. https://doi.org/10.1186/1475-2840-11-127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Stein JH, Korcarz CE, Hurst RT et al (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21(2):93–111. https://doi.org/10.1016/j.echo.2007.11.011

    Article  PubMed  Google Scholar 

  17. 17.

    Wilkinson IB, MacCallum H, Flint L et al (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525(Pt 1):263–270. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00263.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Vlahos AP, Theocharis P, Bechlioulis A et al (2011) Changes in vascular function and structure in juvenile idiopathic arthritis. Arthritis Care Res 63(12):1736–1744. https://doi.org/10.1002/acr.20613

    Article  Google Scholar 

  19. 19.

    Almourani R, Chinnakotla B, Patel R et al (2019) Diabetes and cardiovascular disease: an update. Curr Diab Rep 19(12):161. https://doi.org/10.1007/s11892-019-1239-x

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Holman RR, Paul SK, Bethel MA et al (2008) Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 359(15):1565–1576. https://doi.org/10.1056/NEJMoa0806359

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Terry T, Raravikar K, Chokrungvaranon N et al (2012) Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? Insights from ACCORD, ADVANCE, and VADT. Curr Cardiol Rep 14(1):79–88. https://doi.org/10.1007/s11886-011-0238-6

    Article  PubMed  Google Scholar 

  22. 22.

    Barrett EJ, Liu Z, Khamaisi M et al (2017) Diabetic microvascular disease: an endocrine society scientific statement. J Clin Endocrinol Metab 102(12):4343–4410. https://doi.org/10.1210/jc.2017-01922

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Reichard P, Nilsson BY, Rosenqvist U (1993) The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med 329(5):304–309. https://doi.org/10.1056/NEJM199307293290502

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352(9131): 837–853. https://doi.org/10.1016/S0140-6736(98)07019-6

  25. 25.

    Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24):2560–2572. https://doi.org/10.1056/NEJMoa0802987

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Tryggestad JB, Thompson DM, Copeland KC et al (2013) Arterial compliance is increased in children with type 2 diabetes compared with normal weight peers but not obese peers. Pediatr Diabetes 14(4):259–266. https://doi.org/10.1111/pedi.12017

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Prisant LM, Mehta P, Arora V et al (2006) Relationship between glycosylated hemoglobin and arterial elasticity. Prev Cardiol 9(3):160–165. https://doi.org/10.1111/j.1520-037x.2006.04851.x

    Article  PubMed  Google Scholar 

  28. 28.

    Tabatabaei-Malazy O, Fakhrzadeh H, Sharifi F et al (2015) Effect of metabolic control on oxidative stress, subclinical atherosclerosis and peripheral artery disease in diabetic patients. J Diabetes Metab Disord 14:84. https://doi.org/10.1186/s40200-015-0215-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kawasumi M, Tanaka Y, Uchino H et al (2006) Strict glycemic control ameliorates the increase of carotid IMT in patients with type 2 diabetes. Endocr J 53(1):45–50. https://doi.org/10.1507/endocrj.53.45

    Article  PubMed  Google Scholar 

  30. 30.

    Katakami N, Yamasaki Y, Hayaishi-Okano R et al (2004) Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia 47(11):1906–1913. https://doi.org/10.1007/s00125-004-1547-8

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Mita T, Katakami N, Yoshii H et al (2016) Alogliptin, a dipeptidyl peptidase 4 inhibitor, prevents the progression of carotid atherosclerosis in patients with type 2 diabetes: the Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A). Diabetes Care 39(1):139–148. https://doi.org/10.2337/dc15-0781

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Mita T, Watada H, Shimizu T et al (2007) Nateglinide reduces carotid intima-media thickening in type 2 diabetic patients under good glycemic control. Arterioscler Thromb Vasc Biol 27(11):2456–2462. https://doi.org/10.1161/ATVBAHA.107.152835

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Yasunari E, Takeno K, Funayama H et al (2011) Efficacy of pioglitazone on glycemic control and carotid intima-media thickness in type 2 diabetes patients with inadequate insulin therapy. J Diabetes Investig 2(1):56–62. https://doi.org/10.1111/j.2040-1124.2010.00064.x

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Patti AM, Nikolic D, Magan-Fernandez A et al (2019) Exenatide once-weekly improves metabolic parameters, endothelial dysfunction and carotid intima-media thickness in patients with type-2 diabetes: An 8-month prospective study. Diabetes Res Clin Pract 149:163–169. https://doi.org/10.1016/j.diabres.2019.02.006

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lundby-Christensen L, Vaag A, Tarnow L et al (2016) Effects of biphasic, basal-bolus or basal insulin analogue treatments on carotid intima-media thickness in patients with type 2 diabetes mellitus: the randomised Copenhagen Insulin and Metformin Therapy (CIMT) trial. BMJ Open 6(2):e008377. https://doi.org/10.1136/bmjopen-2015-008377

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cosentino F, Grant PJ, Aboyans V et al (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wannamethee SG, Shaper AG, Whincup PH et al (2011) Impact of diabetes on cardiovascular disease risk and all-cause mortality in older men: influence of age at onset, diabetes duration, and established and novel risk factors. Arch Intern Med 171(5):404–410. https://doi.org/10.1001/archinternmed.2011.2

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Venuraju SM, Lahiri A, Jeevarethinam A et al (2019) Duration of type 2 diabetes mellitus and systolic blood pressure as determinants of severity of coronary stenosis and adverse events in an asymptomatic diabetic population: PROCEED study. Cardiovasc Diabetol 18(1):51. https://doi.org/10.1186/s12933-019-0855-8

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Herman ME, O’Keefe JH, Bell DSH et al (2017) Insulin therapy increases cardiovascular risk in type 2 diabetes. Prog Cardiovasc Dis 60(3):422–434. https://doi.org/10.1016/j.pcad.2017.09.001

    Article  PubMed  Google Scholar 

  40. 40.

    Dongerkery SP, Schroeder PR, Shomali ME (2017) Insulin and its cardiovascular effects: what is the current evidence? Curr Diab Rep 17(12):120. https://doi.org/10.1007/s11892-017-0955-3

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M (2015) Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 64(3):673–686. https://doi.org/10.2337/db14-0694

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sfairopoulos D, Liatis S, Tigas S, Liberopoulos E (2018) Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Hormones (Athens) 17(3):333–350. https://doi.org/10.1007/s42000-018-0038-0

    Article  Google Scholar 

  43. 43.

    Home P (2019) Cardiovascular outcome trials of glucose-lowering medications: an update. Diabetologia 62(3):357–369. https://doi.org/10.1007/s00125-018-4801-1

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

SA: obtained and managed data, led statistical analysis, contributed to the literature review and interpretation of results, wrote/reviewed/edited the manuscript, and approved the final manuscript; KKN, AB, and MP: conducted statistical analysis, contributed to the literature review and interpretation of results, wrote/reviewed/edited the manuscript, and approved the final manuscript; AT and LKM: contributed to the literature review and interpretation of results, edited the manuscript, and approved the final manuscript; and ST: supervised the entire study, obtained and managed data, contributed to the literature review and interpretation of results, wrote/reviewed/edited the manuscript, and approved the final manuscript.

Corresponding author

Correspondence to Stelios Tigas.

Ethics declarations

Ethics approval

The study was approved by the Ioannina University Hospital Research Ethics Committee and complies with the Declaration of Helsinki.

Informed consent to participate

Informed consent was obtained from all study participants.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antoniou, S., Naka, K.K., Bechlioulis, A. et al. Vascular effects following intensification of glycemic control in poorly controlled patients with long-standing type 2 diabetes mellitus. Hormones (2021). https://doi.org/10.1007/s42000-021-00318-x

Download citation

Keywords

  • Diabetes mellitus
  • HbA1c
  • Intensive glycemic control
  • Arterial stiffness
  • Endothelial function
  • Carotid intima-media thickness