Skip to main content

Myostatin serum levels in children with type 1 diabetes mellitus

Abstract

Purpose

Type 1 diabetes mellitus (T1DM) can cause several complications, among them myopathy, which can appear even in adolescents. This is of importance, since skeletal muscle is the largest of the insulin-sensitive tissues and thus plays a significant role in glucose homeostasis. A prime regulator of skeletal muscle mass is myostatin, a protein which has a negative role in skeletal muscle development but also in glucose homeostasis, causing insulin resistance. Since myopathy is a complication of T1DM and myostatin is a fundamental regulator of skeletal muscle and is also involved in glucose homeostasis, we investigated the serum levels of myostatin in children with T1DM.

Methods

We determined myostatin serum levels using ELISA in 87 children with T1DM aged 10.62 ± 3.94 years, and in 75 healthy children aged 10.46 ± 3.32 years old.

Results

Myοstatin was significantly elevated in T1DM compared to the healthy control children (23.60 ± 7.70 vs 16.74 ± 6.95 ng/ml, p < 0.0001). Myostatin was not correlated with body mass index (BMI) SD or hemoglobin A1c (HbA1c).

Conclusion

Children with T1DM have significantly higher serum levels of myostatin compared to healthy children of the same age and BMI SD. The elevated myostatin in T1DM could reflect impaired muscle function and/or glucose metabolism, or could represent a homeostatic mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and material

All authors confirm that all data and materials as well as software application support their published claims and comply with field standards.

Code availability

SPSS version 25 license from the University of Patras, Greece. WHO AnthroPlus is available free from the WHO internet page.

References

  1. 1.

    Katz LD, Glickman MG, Rapoport S, Ferrannini E, DeFronzo RA (1983) Splanchnic and peripheral disposal of oral glucose in man. Diabetes 32:675–679. https://doi.org/10.2337/diab.32.7.675

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Baron AD, Brechtel G, Wallace P, Edelman SV (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 255:E769–E774. https://doi.org/10.1152/ajpendo.1988.255.6.E769

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12:345–364. https://doi.org/10.1111/j.1399-5448.2010.00699.x

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Andersen H, Gadeberg PC, Brock B, Jakobsen J (1997) Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia 40:1062–1069. https://doi.org/10.1007/s001250050788

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Andersen H, Schmitz O, Nielsen S (2005) Decreased isometric muscle strength after acute hyperglycaemia in Type 1 diabetic patients. Diabet Med 22:1401–1407. https://doi.org/10.1111/j.1464-5491.2005.01649.x

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Maratova K, Soucek O, Matyskova J et al (2018) Muscle functions and bone strength are impaired in adolescents with type 1 diabetes. Bone 106:22–27. https://doi.org/10.1016/j.bone.2017.10.005

    Article  PubMed  Google Scholar 

  7. 7.

    McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90. https://doi.org/10.1038/387083a0

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Grobet L, Pirottin D, Farnir F et al (2003) Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35:227–238. https://doi.org/10.1002/gene.10188

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Reisz-Porszasz S, Bhasin S, Artaza JN et al (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285:E876–E888. https://doi.org/10.1152/ajpendo.00107.2003

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Guo T, Bond ND, Jou W, Gavrilova O, Portas J, McPherron AC (2012) Myostatin inhibition prevents diabetes and hyperphagia in a mouse model of lipodystrophy. Diabetes 61:2414–2423. https://doi.org/10.2337/db11-0915

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wilkes JJ, Lloyd DJ, Gekakis N (2009) Loss-of-function mutation in myostatin reduces tumor necrosis factor alpha production and protects liver against obesity-induced insulin resistance. Diabetes 58:1133–1143. https://doi.org/10.2337/db08-0245

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron AC (2009) Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE 4:e4937. https://doi.org/10.1371/journal.pone.0004937

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA (2009) Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58:30–38. https://doi.org/10.2337/db08-0943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Garikipati DK, Rodgers BD (2012) Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J Endocrinol 215:177–187. https://doi.org/10.1530/JOE-12-0260

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Wang F, Liao Y, Li X, Ren C, Cheng C, Ren Y (2012) Increased circulating myostatin in patients with type 2 diabetes mellitus. J Huazhong Univ Sci Technolog Med Sci 32:534–539. https://doi.org/10.1007/s11596-012-0092-9

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Amor M, Itariu BK, Moreno-Viedma V et al (2018) Serum myostatin is upregulated in obesity and correlates with insulin resistance in humans. Exp Clin Endocrinol Diabetes

  17. 17.

    Tanaka M, Masuda S, Yamakage H et al (2018) Role of serum myostatin in the association between hyperinsulinemia and muscle atrophy in Japanese obese patients. Diabetes Res Clin Pract 142:195–202. https://doi.org/10.1016/j.diabres.2018.05.041

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ehehalt S, Schweizer R, Blumenstock G et al (2011) Investigation of myostatin serum levels before and after a 6-month lifestyle intervention program in obese children. Exp Clin Endocrinol Diabetes 119:238–242

    CAS  Article  Google Scholar 

  19. 19.

    Dial AG, Monaco CMF, Grafham GK et al (2020) Muscle and serum myostatin expression in type 1 diabetes. Physiol Rep 8:e14500. https://doi.org/10.14814/phy2.14500

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yki-Jarvinen H, Koivisto VA (1986) Natural course of insulin resistance in type I diabetes. N Engl J Med 315:224–230. https://doi.org/10.1056/NEJM198607243150404

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Amiel SA, Sherwin RS, Simonson DC, Lauritano AA, Tamborlane WV (1986) Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes. N Engl J Med 315:215–219. https://doi.org/10.1056/NEJM198607243150402

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Donga E, Dekkers OM, Corssmit EP, Romijn JA (2015) Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol 173:101–109. https://doi.org/10.1530/EJE-14-0911

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Peltoniemi P, Yki-Jarvinen H, Oikonen V et al (2001) Resistance to exercise-induced increase in glucose uptake during hyperinsulinemia in insulin-resistant skeletal muscle of patients with type 1 diabetes. Diabetes 50:1371–1377. https://doi.org/10.2337/diabetes.50.6.1371

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Nadeau KJ, Regensteiner JG, Bauer TA et al (2010) Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab 95:513–521. https://doi.org/10.1210/jc.2009-1756

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Schauer IE, Snell-Bergeon JK, Bergman BC et al (2011) Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: the CACTI study. Diabetes 60:306–314. https://doi.org/10.2337/db10-0328

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Cree-Green M, Stuppy JJ, Thurston J et al (2018) Youth with type 1 diabetes have adipose, hepatic, and peripheral insulin resistance. J Clin Endocrinol Metab 103:3647–3657. https://doi.org/10.1210/jc.2018-00433

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Bjornstad P, Schäfer M, Truong U et al (2018) Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes mellitus. Circulation 138:2895–2907. https://doi.org/10.1161/CIRCULATIONAHA.118.035525

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Monaco CMF, Hughes MC, Ramos SV et al (2018) Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia 61:1411–1423. https://doi.org/10.1007/s00125-018-4602-6

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Monaco CMF, Bellissimo CA, Hughes MC et al (2020) Sexual dimorphism in human skeletal muscle mitochondrial bioenergetics in response to type 1 diabetes. Am J Physiol Endocrinol Metab 318:E44–E51. https://doi.org/10.1152/ajpendo.00411.2019

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Heyman E, Daussin F, Wieczorek V et al (2020) Muscle oxygen supply and use in type 1 diabetes, from ambient air to the mitochondrial respiratory chain: is there a limiting step? Diabetes Care 43:209–218. https://doi.org/10.2337/dc19-1125

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Cree-Green M, Newcomer BR, Brown MS et al (2015) Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes 64:383–392. https://doi.org/10.2337/db14-0765

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Assyov YS, Velikova TV, Kamenov ZA (2017) Myostatin and carbohydrate disturbances. Endocr Res 42:102–109. https://doi.org/10.1080/07435800.2016.1198802

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Brandt C, Nielsen AR, Fischer CP, Hansen J, Pedersen BK, Plomgaard P (2012) Plasma and muscle myostatin in relation to type 2 diabetes. PLoS ONE 7:e37236. https://doi.org/10.1371/journal.pone.0037236

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Garcia-Fontana B, Reyes-Garcia R, Morales-Santana S et al (2016) Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? Endocrine 52:54–62. https://doi.org/10.1007/s12020-015-0758-8

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Coleman SK, Rebalka IA, D’Souza DM, Deodhare N, Desjardins EM, Hawke TJ (2016) Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep 6:32495. https://doi.org/10.1038/srep32495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jeong J, Conboy MJ, Conboy IM (2013) Pharmacological inhibition of myostatin/TGF-β receptor/pSmad3 signaling rescues muscle regenerative responses in mouse model of type 1 diabetes. Acta Pharmacol Sin 34:1052–1060. https://doi.org/10.1038/aps.2013.67

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Nuutila P, Knuuti J, Ruotsalainen U et al (1993) Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. Am J Physiol 264:E756–E762. https://doi.org/10.1152/ajpendo.1993.264.5.E756

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kelley DE, Goodpaster B, Wing RR, Simoneau JA (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 277:E1130–E1141. https://doi.org/10.1152/ajpendo.1999.277.6.E1130

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Zhang C, McFarlane C, Lokireddy S et al (2012) Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 55:183–193. https://doi.org/10.1007/s00125-011-2304-4

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Bonala S, Lokireddy S, McFarlane C, Patnam S, Sharma M, Kambadur R (2014) Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake. J Biol Chem 289:7654–7670. https://doi.org/10.1074/jbc.M113.529925

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cleasby ME, Jarmin S, Eilers W et al (2014) Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Am J Physiol Endocrinol Metab 306:E814–E823. https://doi.org/10.1152/ajpendo.00586.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dimitra Kritikou for her excellent technical assistance.

Author information

Affiliations

Authors

Contributions

Conceptualization: Dionisios Chrysis and Ioannis Anargyros Vasilakis; supervision: Dionisios Chrysis and Alexandra Efthymiadou; formal analysis and investigation: Alexandra Eftymiadou and Ioannis Anargyros Vasilakis; statistics: Aristeidis Giannakopoulos; writing original draft preparation: Dionisios Chrysis; review and editing: Alexandra Eftymiadou, Ioannis Anargyros Vasilakis, and Aristeidis Giannakopoulos.

Corresponding author

Correspondence to Dionisios Chrysis.

Ethics declarations

Ethics approval and consent to participate

The procedures used in this study were in line with principles of the Declaration of Helsinki. The study protocol was approved by the Ethical committee of the University Hospital of Patras, Greece. All children and their parents were informed, and written consent was obtained before participation in the study.

Consent for publication

Not applicable since participated subjects cannot be identified.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efthymiadou, A., Vasilakis, IA., Giannakopoulos, A. et al. Myostatin serum levels in children with type 1 diabetes mellitus. Hormones (2021). https://doi.org/10.1007/s42000-021-00317-y

Download citation

Keywords

  • Myostatin
  • Children
  • Adolescent
  • T1DM