Skip to main content
Log in

Novel trends and concepts in the nutritional management of glycemia in type 2 diabetes mellitus—beyond dietary patterns: a narrative review

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

A variety of eating patterns are recommended by international guidelines to help people with type 2 diabetes mellitus (T2DM) achieve general health and glycemia goals. Apart from eating patterns, there is evidence that other approaches related to the everyday application of dietary advice, such as meal frequency, breakfast consumption, daily carbohydrate distribution, and order of food consumption during meals, have significant effects on glycemia management. The aims of this review were to examine published diabetes nutrition guidelines concerning specific recommendations with regard to the above approaches, as well as to review evidence from studies that have investigated their effect on glycemia in T2DM. The data suggest that eating breakfast regularly, consuming most carbohydrates at lunch, avoiding large dinners late at night, and applying the carbohydrate-last meal pattern are effective practices towards better nutritional management of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Diabetes Federation (2019) IDF Diabetes Atlas. http://www.diabetesatlas.org. Accessed 21 Jan 2021

  2. Entmacher PS, Marks HH (1965) Diabetes in 1964; a world survey. Diabetes 14:212–223. https://doi.org/10.2337/diab.14.4.212

    Article  PubMed  CAS  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053. https://doi.org/10.2337/diacare.27.5.1047

    Article  PubMed  Google Scholar 

  4. Briggs Early K, Stanley K (2018) Position of the Academy of Nutrition and Dietetics: the role of medical nutrition therapy and registered dietitian nutritionists in the prevention and treatment of prediabetes and type 2 diabetes. J Acad Nutr Diet 118(2):343–353. https://doi.org/10.1016/j.jand.2017.11.021

    Article  PubMed  Google Scholar 

  5. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, Mitri J, Pereira RF, Rawlings K, Robinson S, Saslow L, Uelmen S, Urbanski PB, Yancy WS Jr (2019) Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42(5):731–754. https://doi.org/10.2337/dci19-0014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maryniuk MD (2017) From pyramids to plates to patterns: perspectives on meal planning. Diabetes Spectr 30(2):67–70. https://doi.org/10.2337/ds16-0080

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB, (2018) Management of hyperglycemia in type 2 diabetes, (2018) A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41(12):2669–2701. https://doi.org/10.2337/dci18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  8. Powers MA, Bardsley J, Cypress M, Duker P, Funnell MM, Fischl AH, Maryniuk MD, Siminerio L, Vivian E (2016) Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Clin Diabetes 34(2):70–80. https://doi.org/10.2337/diaclin.34.2.70

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sievenpiper JL, Chan CB, Dworatzek PD, Freeze C, Williams SL (2018) Nutrition Therapy. Can J Diabetes 42(Suppl 1):S64-s79. https://doi.org/10.1016/j.jcjd.2017.10.009

    Article  PubMed  Google Scholar 

  10. American Diabetes Association (2021) 5. Facilitating behavior change and well-being to improve health outcomes: Standards of Medical Care in Diabetes—2021. Diab Care 44(Suppl 1):S53–s72. https://doi.org/10.2337/dc21-S005

  11. International Diabetes Federation Guideline Development Group (2014) Guideline for management of postmeal glucose in diabetes. Diabetes Res Clin Pract 103(2):256–268. https://doi.org/10.1016/j.diabres.2012.08.002

    Article  Google Scholar 

  12. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpierrez GE (2019) Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2019 executive summary. Endocr Pract 25(1):69–100. https://doi.org/10.4158/cs-2018-0535

    Article  PubMed  Google Scholar 

  13. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13(1):3–9. https://doi.org/10.1097/00041433-200202000-00002

    Article  PubMed  CAS  Google Scholar 

  14. US Department of Agriculture. A series of systematic reviews on the relationship between dietary patterns and health outcomes. https://nesr.usda.gov/dietary-patterns-systematic-reviews-project-0. Accessed 21 Jan 2021

  15. Papamichou D, Panagiotakos DB, Itsiopoulos C (2019) Dietary patterns and management of type 2 diabetes: a systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis 29(6):531–543. https://doi.org/10.1016/j.numecd.2019.02.004

    Article  PubMed  CAS  Google Scholar 

  16. Diolintzi A, Panagiotakos DB, Sidossis LS (2019) From Mediterranean diet to Mediterranean lifestyle: a narrative review. Public Health Nutr 22(14):2703–2713. https://doi.org/10.1017/s1368980019000612

  17. Romagnolo DF, Selmin OI (2017) Mediterranean diet and prevention of chronic diseases. Nutr Today 52(5):208–222. https://doi.org/10.1097/nt.0000000000000228

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kromhout DMA, Blackburn H (eds) (1994) The Seven Countries Study: a scientific adventure in cardiovascular disease epidemiology. Offset bv, Utrecht

    Google Scholar 

  19. Fernemark H, Jaredsson C, Bunjaku B, Rosenqvist U, Nystrom FH, Guldbrand H (2013) A randomized cross-over trial of the postprandial effects of three different diets in patients with type 2 diabetes. PLoS ONE 8(11):e79324. https://doi.org/10.1371/journal.pone.0079324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pearce KL, Noakes M, Keogh J, Clifton PM (2008) Effect of carbohydrate distribution on postprandial glucose peaks with the use of continuous glucose monitoring in type 2 diabetes. Am J Clin Nutr 87(3):638–644. https://doi.org/10.1093/ajcn/87.3.638

    Article  PubMed  CAS  Google Scholar 

  21. Jenkins DJ (1997) Carbohydrate tolerance and food frequency. Br J Nutr 77(Suppl 1):S71-81. https://doi.org/10.1079/bjn19970105

    Article  PubMed  CAS  Google Scholar 

  22. Piccinino LJ, Devchand R, Gallivan J, Tuncer D, Nicols C, Siminerio LM (2017) Insights from the National Diabetes Education Program National Diabetes Survey: opportunities for diabetes self-management education and support. Diabetes Spectr 30(2):95–100. https://doi.org/10.2337/ds16-0056

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leech RM, Worsley A, Timperio A, McNaughton SA (2015) Understanding meal patterns: definitions, methodology and impact on nutrient intake and diet quality. Nutr Res Rev 28(1):1–21. https://doi.org/10.1017/s0954422414000262

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yannakoulia M (2006) Eating behavior among type 2 diabetic patients: a poorly recognized aspect in a poorly controlled disease. Rev Diabet Stud 3(1):11–16. https://doi.org/10.1900/rds.2006.3.11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dyson PA, Twenefour D, Breen C, Duncan A, Elvin E, Goff L, Hill A, Kalsi P, Marsland N, McArdle P, Mellor D, Oliver L, Watson K (2018) Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 35(5):541–547. https://doi.org/10.1111/dme.13603

    Article  PubMed  CAS  Google Scholar 

  26. Hassanein M, Tarik AE, Mohamed NA (2021) Management of type 2 diabetes when fasting during Ramadan. Diabetes and Ramadan: Practical Guidelines. IDF-DAR Alliance, Brussels, Belgium

    Google Scholar 

  27. IDF (2017) Managing older people with type 2 diabetes. Global Guideline. IDF, Brussels, Belgium

    Google Scholar 

  28. Franz MJ, MacLeod J, Evert A, Brown C, Gradwell E, Handu D, Reppert A, Robinson M (2017) Academy of Nutrition and Dietetics Nutrition Practice Guideline for type 1 and type 2 diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J Acad Nutr Diet 117(10):1659–1679. https://doi.org/10.1016/j.jand.2017.03.022

    Article  PubMed  Google Scholar 

  29. The Royal Australian College of General Practitioners (2016) General practice management of type 2 diabetes: 2016–18. RACGP, East Melbourne, Vic

    Google Scholar 

  30. Jia W, Weng J, Zhu D, Ji L, Lu J, Zhou Z (2019) Standards of medical care for type 2 diabetes in China 2019. Diab Metab Res Rev 35(6). https://doi.org/10.1002/dmrr.3158

  31. St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, Varady K (2017) Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 135(9):e96–e121. https://doi.org/10.1161/cir.0000000000000476

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li C, D’Agostino RB Jr, Dabelea D, Liese AD, Mayer-Davis EJ, Pate R, Merchant AT (2018) Longitudinal association between eating frequency and hemoglobin A1c and serum lipids in diabetes in the SEARCH for Diabetes in Youth study. Pediatr Diabetes 19(6):1073–1078. https://doi.org/10.1111/pedi.12690

    Article  CAS  Google Scholar 

  33. Beebe CA, Van Cauter E, Shapiro ET, Tillil H, Lyons R, Rubenstein AH, Polonsky KS (1990) Effect of temporal distribution of calories on diurnal patterns of glucose levels and insulin secretion in NIDDM. Diabetes Care 13(7):748–755. https://doi.org/10.2337/diacare.13.7.748

    Article  PubMed  CAS  Google Scholar 

  34. Marathe CS, Rayner CK, Jones KL, Horowitz M (2013) Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care 36(5):1396–1405. https://doi.org/10.2337/dc12-1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jenkins DJ, Ocana A, Jenkins AL, Wolever TM, Vuksan V, Katzman L, Hollands M, Greenberg G, Corey P, Patten R et al (1992) Metabolic advantages of spreading the nutrient load: effects of increased meal frequency in non-insulin-dependent diabetes. Am J Clin Nutr 55(2):461–467. https://doi.org/10.1093/ajcn/55.2.461

    Article  PubMed  CAS  Google Scholar 

  36. Bertelsen J, Christiansen C, Thomsen C, Poulsen PL, Vestergaard S, Steinov A, Rasmussen LH, Rasmussen O, Hermansen K (1993) Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diabetes Care 16(1):4–7. https://doi.org/10.2337/diacare.16.1.4

    Article  PubMed  CAS  Google Scholar 

  37. Arnold L, Mann JI, Ball MJ (1997) Metabolic effects of alterations in meal frequency in type 2 diabetes. Diabetes Care 20(11):1651–1654. https://doi.org/10.2337/diacare.20.11.1651

    Article  PubMed  CAS  Google Scholar 

  38. Thomsen C, Christiansen C, Rasmussen OW, Hermansen K (1997) Comparison of the effects of two weeks’ intervention with different meal frequencies on glucose metabolism, insulin sensitivity and lipid levels in non-insulin-dependent diabetic patients. Ann Nutr Metab 41(3):173–180. https://doi.org/10.1159/000177993

    Article  PubMed  CAS  Google Scholar 

  39. Papakonstantinou E, Kontogianni MD, Mitrou P, Magriplis E, Vassiliadi D, Nomikos T, Lambadiari V, Georgousopoulou E, Dimitriadis G (2018) Effects of 6 vs 3 eucaloric meal patterns on glycaemic control and satiety in people with impaired glucose tolerance or overt type 2 diabetes: a randomized trial. Diabetes Metab 44(3):226–234. https://doi.org/10.1016/j.diabet.2018.03.008

    Article  PubMed  CAS  Google Scholar 

  40. Kahleova H, Belinova L, Malinska H, Oliyarnyk O, Trnovska J, Skop V, Kazdova L, Dezortova M, Hajek M, Tura A, Hill M, Pelikanova T (2014) Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia 57(8):1552–1560. https://doi.org/10.1007/s00125-014-3253-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jakubowicz D, Landau Z, Tsameret S, Wainstein J, Raz I, Ahren B, Chapnik N, Barnea M, Ganz T, Menaged M, Mor N, Bar-Dayan Y, Froy O (2019) Reduction in glycated hemoglobin and daily insulin dose alongside circadian clock upregulation in patients with type 2 diabetes consuming a three-meal diet: a randomized clinical trial. Diabetes Care 42(12):2171–2180. https://doi.org/10.2337/dc19-1142

    Article  PubMed  CAS  Google Scholar 

  42. Affinita A, Catalani L, Cecchetto G, De Lorenzo G, Dilillo D, Donegani G, Fransos L, Lucidi F, Mameli C, Manna E, Marconi P, Mele G, Minestroni L, Montanari M, Morcellini M, Rovera G, Rotilio G, Sachet M, Zuccotti GV (2013) Breakfast: a multidisciplinary approach. Ital J Pediatr 39:44. https://doi.org/10.1186/1824-7288-39-44

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bonnet JP, Cardel MI, Cellini J, Hu FB, Guasch-Ferré M (2020) Breakfast skipping, body composition, and cardiometabolic risk: a systematic review and meta-analysis of randomized trials. Obesity (Silver Spring) 28(6):1098–1109. https://doi.org/10.1002/oby.22791

    Article  CAS  Google Scholar 

  44. Sievert K, Hussain SM, Page MJ, Wang Y, Hughes HJ, Malek M, Cicuttini FM (2019) Effect of breakfast on weight and energy intake: systematic review and meta-analysis of randomised controlled trials. BMJ 364:l42. https://doi.org/10.1136/bmj.l42

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bi H, Gan Y, Yang C, Chen Y, Tong X, Lu Z (2015) Breakfast skipping and the risk of type 2 diabetes: a meta-analysis of observational studies. Public Health Nutr 18(16):3013–3019. https://doi.org/10.1017/s1368980015000257

    Article  PubMed  Google Scholar 

  46. Ballon A, Neuenschwander M, Schlesinger S (2019) Breakfast skipping is associated with increased risk of type 2 diabetes among adults: a systematic review and meta-analysis of prospective cohort studies. J Nutr 149(1):106–113. https://doi.org/10.1093/jn/nxy194

    Article  PubMed  Google Scholar 

  47. Schmidt LE, Rost KM, McGill JB, Santiago JV (1994) The relationship between eating patterns and metabolic control in patients with non-insulin-dependent diabetes mellitus (NIDDM). Diabetes Educ 20(4):317–321. https://doi.org/10.1177/014572179402000410

    Article  PubMed  CAS  Google Scholar 

  48. Gouda M, Matsukawa M, Iijima H (2018) Associations between eating habits and glycemic control and obesity in Japanese workers with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 11:647–658. https://doi.org/10.2147/dmso.S176749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O (2015) Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care 38(10):1820–1826. https://doi.org/10.2337/dc15-0761

    Article  PubMed  CAS  Google Scholar 

  50. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL (2014) The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 31(1):64–71. https://doi.org/10.3109/07420528.2013.821614

    Article  PubMed  CAS  Google Scholar 

  51. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, Van Cauter E (2013) Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 36(9):2523–2529. https://doi.org/10.2337/dc12-2697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jakubowicz D, Wainstein J, Landau Z, Raz I, Ahren B, Chapnik N, Ganz T, Menaged M, Barnea M, Bar-Dayan Y, Froy O (2017) Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: a randomized clinical trial. Diabetes Care 40(11):1573–1579. https://doi.org/10.2337/dc16-2753

    Article  PubMed  CAS  Google Scholar 

  53. Vieira E, Burris TP, Quesada I (2014) Clock genes, pancreatic function, and diabetes. Trends Mol Med 20(12):685–693. https://doi.org/10.1016/j.molmed.2014.10.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Franc S, Dardari D, Peschard C, Riveline JP, Biedzinski M, Boucherie B, Petit C, Requeda E, Mistretta F, Varroud-Vial M, Charpentier G (2010) Can postprandial blood glucose excursion be predicted in type 2 diabetes? Diabetes Care 33(9):1913–1918. https://doi.org/10.2337/dc10-0115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Noh YH, Lee WJ, Kim KA, Lim I, Lee JH, Lee JH, Kim S, Choi SB (2010) Insulin requirement profiles of patients with type 2 diabetes after achieving stabilized glycemic control with short-term continuous subcutaneous insulin infusion. Diabetes Technol Ther 12(4):271–281. https://doi.org/10.1089/dia.2009.0131

    Article  PubMed  CAS  Google Scholar 

  56. Shimoda S, Okubo M, Koga K, Sekigami T, Kawashima J, Kukidome D, Igata M, Ishii N, Shimakawa A, Matsumura T, Motoshima H, Furukawa N, Nishida K, Araki E (2015) Insulin requirement profiles in Japanese hospitalized subjects with type 2 diabetes treated with basal-bolus insulin therapy. Endocr J 62(2):209–216. https://doi.org/10.1507/endocrj.EJ14-0487

    Article  PubMed  CAS  Google Scholar 

  57. Kang X, Wang C, Lifang L, Chen D, Yang Y, Liu G, Wen H, Chen L, He L, Li X, Tian H, Jia W, Ran X (2013) Effects of different proportion of carbohydrate in breakfast on postprandial glucose excursion in normal glucose tolerance and impaired glucose regulation subjects. Diabetes Technol Ther 15(7):569–574. https://doi.org/10.1089/dia.2012.0305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Park YM, Heden TD, Liu Y, Nyhoff LM, Thyfault JP, Leidy HJ, Kanaley JA (2015) A high-protein breakfast induces greater insulin and glucose-dependent insulinotropic peptide responses to a subsequent lunch meal in individuals with type 2 diabetes. J Nutr 145(3):452–458. https://doi.org/10.3945/jn.114.202549

    Article  PubMed  CAS  Google Scholar 

  59. Chang CR, Francois ME, Little JP (2019) Restricting carbohydrates at breakfast is sufficient to reduce 24-hour exposure to postprandial hyperglycemia and improve glycemic variability. Am J Clin Nutr 109(5):1302–1309. https://doi.org/10.1093/ajcn/nqy261

    Article  PubMed  PubMed Central  Google Scholar 

  60. Derosa G, Franzetti I, Querci F, D’Angelo A, Maffioli P (2015) Effect of acarbose on glycemic variability in patients with poorly controlled type 2 diabetes mellitus receiving stable background therapy: a placebo-controlled trial. Pharmacotherapy 35(11):983–990. https://doi.org/10.1002/phar.1648

    Article  PubMed  CAS  Google Scholar 

  61. Haldar S, Egli L, De Castro CA, Tay SL, Koh MXN, Darimont C, Henry CJ (2020) High or low glycemic index (GI) meals at dinner results in greater postprandial glycemia compared with breakfast: a randomized controlled trial. BMJ Open Diab Res Care 8(1):e001099. https://doi.org/10.1136/bmjdrc-2019-001099

  62. Ceriello A, Monnier L, Owens D (2019) Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol 7(3):221–230. https://doi.org/10.1016/s2213-8587(18)30136-0

    Article  PubMed  Google Scholar 

  63. Pedersen E, Lange K, Clifton P (2016) Effect of carbohydrate restriction in the first meal after an overnight fast on glycemic control in people with type 2 diabetes: a randomized trial. Am J Clin Nutr 104(5):1285–1291. https://doi.org/10.3945/ajcn.116.135343

    Article  PubMed  CAS  Google Scholar 

  64. Jakubowicz D, Wainstein J, Ahren B, Bar-Dayan Y, Landau Z, Rabinovitz HR, Froy O (2015) High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia 58(5):912–919. https://doi.org/10.1007/s00125-015-3524-9

    Article  PubMed  CAS  Google Scholar 

  65. Kessler K, Hornemann S, Petzke KJ, Kemper M, Kramer A, Pfeiffer AF, Pivovarova O, Rudovich N (2017) The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: a randomized controlled trial. Sci Rep 7:44170. https://doi.org/10.1038/srep44170

    Article  PubMed  PubMed Central  Google Scholar 

  66. Imai S, Kajiyama S, Hashimoto Y, Yamane C, Miyawaki T, Ozasa N, Tanaka M, Fukui M (2017) Divided consumption of late-night-dinner improves glycemic excursions in patients with type 2 diabetes: a randomized cross-over clinical trial. Diabetes Res Clin Pract 129:206–212. https://doi.org/10.1016/j.diabres.2017.05.010

    Article  PubMed  Google Scholar 

  67. Imai S, Kajiyama S, Hashimoto Y, Nitta A, Miyawaki T, Matsumoto S, Ozasa N, Tanaka M, Kajiyama S, Fukui M (2018) Consuming snacks mid-afternoon compared with just after lunch improves mean amplitude of glycaemic excursions in patients with type 2 diabetes: a randomized crossover clinical trial. Diabetes Metab 44(6):482–487. https://doi.org/10.1016/j.diabet.2018.07.001

    Article  PubMed  CAS  Google Scholar 

  68. Nesti L, Mengozzi A, Trico D (2019) Impact of nutrient type and sequence on glucose tolerance: physiological insights and therapeutic implications. Front Endocrinol (Lausanne) 10:144. https://doi.org/10.3389/fendo.2019.00144

    Article  Google Scholar 

  69. Trico D, Filice E, Trifiro S, Natali A (2016) Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under free-living conditions. Nutr Diabetes 6(8):e226. https://doi.org/10.1038/nutd.2016.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Shukla AP, Iliescu RG, Thomas CE, Aronne LJ (2015) Food order has a significant impact on postprandial glucose and insulin levels. Diabetes Care 38(7):e98-99. https://doi.org/10.2337/dc15-0429

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shukla AP, Andono J, Touhamy SH, Casper A, Iliescu RG, Mauer E, Shan Zhu Y, Ludwig DS, Aronne LJ (2017) Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res Care 5(1):e000440. https://doi.org/10.1136/bmjdrc-2017-000440

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shukla AP, Dickison M, Coughlin N, Karan A, Mauer E, Truong W, Casper A, Emiliano AB, Kumar RB, Saunders KH, Igel LI, Aronne LJ (2019) The impact of food order on postprandial glycaemic excursions in prediabetes. Diabetes Obes Metab 21(2):377–381. https://doi.org/10.1111/dom.13503

    Article  PubMed  CAS  Google Scholar 

  73. Kuwata H, Iwasaki M, Shimizu S, Minami K, Maeda H, Seino S, Nakada K, Nosaka C, Murotani K, Kurose T, Seino Y, Yabe D (2016) Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia 59(3):453–461. https://doi.org/10.1007/s00125-015-3841-z

    Article  PubMed  CAS  Google Scholar 

  74. Imai S, Fukui M, Ozasa N, Ozeki T, Kurokawa M, Komatsu T, Kajiyama S (2013) Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet Med 30(3):370–372. https://doi.org/10.1111/dme.12073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Imai S, Matsuda M, Fujimoto S, Miyatani S, Hasegawa G, Fukui M, Morigami M, Ozasa N, Kajiyama S (2010) Crossover study of the effect of “vegetables before carbohydrates” on reducing postprandial glucose and insulin in Japanese subjects with type 2 diabetes mellitus. J Jpn Diabetes Soc 53(2):112–115. https://doi.org/10.11213/tonyobyo.53.112

    Article  Google Scholar 

  76. Imai S, Fukui M, Kajiyama S (2014) Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes. J Clin Biochem Nutr 54(1):7–11. https://doi.org/10.3164/jcbn.13-67

    Article  PubMed  CAS  Google Scholar 

  77. Imai S, Kajiyama S (2012) Effect of ‘eating vegetables before carbohydrates’ on glycemic control in Japanese patients with type 2 diabetes. J Jpn Diabetes Soc 55(1):1–5. https://doi.org/10.11213/tonyobyo.55.1

    Article  Google Scholar 

  78. Kanaley JA, Heden TD, Liu Y, Fairchild TJ (2014) Alteration of postprandial glucose and insulin concentrations with meal frequency and composition. Br J Nutr 112(9):1484–1493. https://doi.org/10.1017/S0007114514002128

    Article  PubMed  CAS  Google Scholar 

  79. Maki KC, Phillips-Eakley AK, Smith KN (2016) The effects of breakfast consumption and composition on metabolic wellness with a focus on carbohydrate metabolism. Adv Nutr 7(3):613s–621s. https://doi.org/10.3945/an.115.010314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bo S, Musso G, Beccuti G, Fadda M, Fedele D, Gambino R, Gentile L, Durazzo M, Ghigo E, Cassader M (2014) Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS One 9(9):e108467. https://doi.org/10.1371/journal.pone.0108467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zaman A, Rynders C, Steinke S, Tussey E, Kealey E, Thomas E (2019) Later timing of energy intake associates with higher fat mass in adults with overweight and obesity. J Endocr Soc 3:SAT-96. https://doi.org/10.1210/js.2019-SAT-096

    Article  Google Scholar 

  82. Morgan L (2012) Diplomatic gastronomy: style and power at the table. Food Foodways 20(2):146–166. https://doi.org/10.1080/07409710.2012.680366

    Article  Google Scholar 

  83. Monnier L, Bonnet F, Colette C (2016) Tailoring nutrient sequence and content to improve glucose tolerance: why and how to do it. Diabetes Metab 42(4):211–214. https://doi.org/10.1016/j.diabet.2016.04.003

    Article  PubMed  CAS  Google Scholar 

  84. Silva FM, Kramer CK, Crispim D, Azevedo MJ (2015) A high-glycemic index, low-fiber breakfast affects the postprandial plasma glucose, insulin, and ghrelin responses of patients with type 2 diabetes in a randomized clinical trial. J Nutr 145(4):736–741. https://doi.org/10.3945/jn.114.195339

    Article  PubMed  CAS  Google Scholar 

  85. Li CJ, Norstedt G, Hu ZG, Yu P, Li DQ, Li J, Yu Q, Sederholm M, Yu DM (2015) Effects of a macro-nutrient preload on type 2 diabetic patients. Front Endocrinol 6:139. https://doi.org/10.3389/fendo.2015.00139

    Article  Google Scholar 

  86. Wu T, Little TJ, Bound MJ, Borg M, Zhang X, Deacon CF, Horowitz M, Jones KL, Rayner CK (2016) A protein preload enhances the glucose-lowering efficacy of vildagliptin in type 2 diabetes. Diabetes Care 39(4):511–517. https://doi.org/10.2337/dc15-2298

    Article  PubMed  CAS  Google Scholar 

  87. Zubrzycki A, Cierpka-Kmiec K, Kmiec Z, Wronska A (2018) The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J Physiol Pharmacol 69(5). https://doi.org/10.26402/jpp.2018.5.02

  88. Riccardi G, Capaldo B, Vaccaro O (2005) Functional foods in the management of obesity and type 2 diabetes. Curr Opin Clin Nutr Metab Care 8(6):630–635. https://doi.org/10.1097/01.mco.0000171126.98783.0c

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Z.P. and C.D.; writing/original draft preparation: Z.P.; writing/review and editing: Z.P. and C.D.

Corresponding author

Correspondence to Zoe Pafili.

Ethics declarations

Ethics approval

Ethical approval was not required for this study.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pafili, Z., Dimosthenopoulos, C. Novel trends and concepts in the nutritional management of glycemia in type 2 diabetes mellitus—beyond dietary patterns: a narrative review. Hormones 20, 641–655 (2021). https://doi.org/10.1007/s42000-021-00314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-021-00314-1

Keywords

Navigation