Hypoglycemia due to PI3K/AKT/mTOR signaling pathway defects: two novel cases and review of the literature

Abstract

Introduction

The PI3K/AKT/mTOR signaling pathway is important for the regulation of multiple biological processes, including cellular growth and glucose metabolism. Defects of the PI3K/AKT/mTOR signaling pathway are not usually considered among the genetic causes of recurrent hypoglycemia in childhood. However, accumulating evidence links hypoglycemia with defects of this pathway.

Case reports and review

We describe here two cases of macrocephaly and hypoglycemia bearing genetic defects in genes involved in the PI3K/AKT/mTOR pathway. The first patient was diagnosed with a PTEN hamartoma tumour syndrome (PTHS) due to the de novo germline missense mutation c.[492 + 1G > A] of the PTEN gene. The second patient presented the autosomal dominant mental retardation-35 (MDR35) due to the heterozygous missense mutation c.592G > A in the PPP2R5D gene. A review of the literature on hypoglycemia and PI3K/AKT/mTOR signaling pathway defects, with a special focus on the metabolic characterization of hypoglycemia, is included.

Conclusions

PI3K/AKT/mTOR pathway defects should be included in the differential diagnosis of patients with hypoglycemia and macrocephaly. Clinical suspicion and molecular confirmation are important, not just for an accurate genetic counselling but also for defining the follow-up management, including cancer surveillance. The biochemical profile of hypoglycemia varies among patients. While most patients are characterized by low plasmatic insulin levels, hyperinsulinemia has also been observed. Large patient cohorts are needed to gain a comprehensive profile of the biochemical patterns of hypoglycemia in such defects and eventually guide targeted therapeutic interventions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AKT:

Serine/threonine-protein kinase

BCAA:

Branched-chain amino acids

BRRS:

Bannayan-Riley-Ruvalcaba syndrome

BW:

Birth weight

BWS:

Beckwith-Wiedemann syndrome

CES:

Clinical-exome sequencing

CS:

Cowden syndrome

FFA:

Free fatty acids

GH:

Growth hormone

HC:

Head circumference

HH:

Hyperinsulinemic hypoglycemia

IGFBP-1/3:

Insulin-like growth factor binding protein 1/3

IGF-1:

Insulin-like growth factor 1

MCAP:

Megalencephaly-capillary malformations syndrome

MDR35:

Autosomal dominant mental retardation-35

MPPH:

Megalencephaly-polymicrogyria-polydactyly-hydrocephalus Syndrome

MRI:

Magnetic resonance imaging

mTOR:

Mammalian target of rapamycin

mTORC:

MTOR complex

mTORi:

MTOR inhibitor

NGS:

Next-generation sequencing

PHTS:

PTEN hamartoma tumour syndrome

PI3K:

Phosphatidylinositol 3-kinase

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PTEN:

Phosphatase and tensin homolog

WES:

Whole-exome sequencing

References

  1. 1.

    Jansen LA, Mirzaa GM, Ishak GE, O’Roak BJ, Hiatt JB, Roden WH, Gunter SA, Christian SL, Collins S, Adams C et al (2015) PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138(Pt 6):1613–1628

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, Tosi LL, Huson SM, Whitehouse RW, Jakkula E et al (2014) Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A 164A(7):1713–1733

    Article  CAS  Google Scholar 

  3. 3.

    Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352(6330):73–77

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Hay N (2011) AKT isoforms and glucose homeostasis - the leptin connection. Trends Endocrinol Metab 22(2):66–73

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Terauchi Y, Tsuji Y, Satoh S, Minoura H, Murakami K, Okuno A, Inukai K, Asano T, Kaburagi Y, Ueki K et al (1999) Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet 21(2):230–235

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M, St-Onge J, Le Merrer M, Le Luyer B, Héron D, Mathieu-Dramard M et al (2013) PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet 93(1):141–149

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Deau M-C, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, Cavazzana M, Picard C, Durandy A, Fischer A, Kracker S (2015) A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 125(4):1764–1765

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA, Hafen E (2002) Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science 295(5562):2088–2091

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Tong Z, Fan Y, Zhang W, Xu J, Cheng J, Ding M, Deng H (2009) Pancreas-specific PTEN deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling. Cell Res 19(6):710–719

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Shang L, Henderson LB, Cho MT, Petrey DS, Fong CT, Haude KM, Shur N, Lundberg J, Hauser N, Carmichael J et al (2016) De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 17(1):43–49

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Keppler-Noreuil KM, Parker VE, Darling TN, Martinez-Agosto JA (2016) Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Med Genet C Semin Med Genet 172(4):402–421

    CAS  Article  Google Scholar 

  13. 13.

    Rivière JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM et al (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44(8):934–940

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Mirzaa G, Parry DA, Fry AE, Giamanco KA, Schwartzentruber J, Vanstone M, Logan CV, Roberts N, Johnson CA, Singh S et al (2014) De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 46(5):510–515

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, Daly A, Scott C, Harris J, Smillie BJ et al (2011) An activating mutation of AKT2 and human hypoglycemia. Science 334(6055):474

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Leiter SM, Parker VER, Welters A, Knox R, Rocha N, Clark G, Payne F, Lotta L, Harris J, Guerrero-Fernández J et al (2017) Hypoinsulinaemic, hypoketotic hypoglycaemia due to mosaic genetic activation of PI3-kinase. Eur J Endocrinol 177(2):175–186

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Maiorana A, Dionisi-Vici C (2017) Hyperinsulinemic hypoglycemia: clinical, molecular and therapeutical novelties. J Inherit Metab Dis 40(4):531–542

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Tenorio J, Mansilla A, Valencia M, Martínez-Glez V, Romanelli V, Arias P, Castrejón N, Poletta F, Guillén-Navarro E, Gordo G et al (2014) A new overgrowth syndrome is due to mutations in RNF125. Hum Mutat 35(12):1436–1441

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Matsuo T, Ihara K, Ochiai M, Kinjo T, Yoshikawa Y, Kojima-Ishii K, Noda M, Mizumoto H, Misaki M, Minagawa K et al (2013) Hyperinsulinemic hypoglycemia of infancy in Sotos syndrome. Am J Med Genet A 161A(1):34–37

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Mirzaa G, Timms AE, Conti V, Boyle EA, Girisha KM, Martin B, Kircher M, Olds C, Juusola J, Collins S et al (2016) PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight 1(9):e87623

    PubMed Central  Article  PubMed  Google Scholar 

  21. 21.

    Granados A, Eng C, Diaz A (2013) Brothers with germline PTEN mutations and persistent hypoglycemia, macrocephaly, developmental delay, short stature, and coagulopathy. J Pediatr Endocrinol Metab 26(1–2):137–141

    CAS  PubMed  Google Scholar 

  22. 22.

    Ozsu E, Sen A, Ceylaner S (2018) A case of Riley Ruvalcaba syndrome with a novel PTEN mutation accompanied by diffuse testicular microlithiasis and precocious puberty. J Pediatr Endocrinol Metab 31(1):95–99

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    McDermott JH, Hickson N, Banerjee I, Murray PG, Ram D, Metcalfe K, Clayton-Smith J, Douzgou S (2018) Hypoglycaemia represents a clinically significant manifestation of PIK3CA- and CCND2-associated segmental overgrowth. Clin Genet 93(3):687–692

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Nellist M, Schot R, Hoogeveen-Westerveld M, van der Neuteboom RF, Louw EJ, Lequin MH, Bindels-de Heus K, de Sibbles BJ, Coo R, Brooks A et al (2015) Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia. Mol Genet Metab 114(3):467–473

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Liu J, Ding G, Zou K, Jiang Z, Zhang J, Lu Y, Pignata A, Venner E, Liu P, Liu Z et al (2020) Genome sequencing analysis of a family with a child displaying severe abdominal distention and recurrent hypoglycemia. Mol Genet Genomic Med 8(3):e1130

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Arya VB, Flanagan SE, Schober E, Rami-Merhar B, Ellard S, Hussain K (2014) Activating AKT2 mutation: hypoinsulinemic hypoketotic hypoglycemia. J Clin Endocrinol Metab 99(2):391–394

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Stutterd C, McGillivray G, Stark Z, Messazos B, Cameron F, White S, Melbourne Genomics Health Alliance, Mirzaa G, Leventer R (2018) Polymicrogyria in association with hypoglycemia points to mutation in the mTOR pathway. Eur J Med Genet 61(12):738–740

    PubMed  Article  Google Scholar 

  28. 28.

    Şıklar Z, Çetin T, Çakar N, Berberoğlu M (2020) The effectiveness of Sirolimus treatment in two rare disorders with nonketotic hypoinsulinemic hypoglycemia: The role of mTOR pathway. J Clin Res Pediatr Endocrinol. https://doi.org/10.4274/jcrpe.galenos.2020.2019.0084

  29. 29.

    Deciphering Developmental Disorders Study (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519:223–228

    Article  CAS  Google Scholar 

  30. 30.

    Chen HJ, Romigh T, Sesock K, Eng C (2017) Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome. Version 2. Hum Mutat 38(10):1372–1377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Eng C (2001) PTEN hamartoma tumor syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2020

  32. 32.

    Ponzi E, Maiorana A, Lepri FR, Mucciolo M, Semeraro M, Taurisano R, Olivieri G, Novelli A, Dionisi-Vici C (2018) Persistent hypoglycemia in children: targeted gene panel improves the diagnosis of hypoglycemia due to inborn errors of metabolism. J Pediatr 202(272–278):e4

    Google Scholar 

  33. 33.

    Esposito A, Viale G, Curigliano G (2019) Safety, tolerability, and management of toxic effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with cancer: a review. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.0034

  34. 34.

    Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–1446

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Buerkle A, Weber WA (2008) Imaging of tumor glucose utilization with positron emission tomography. Cancer Metastasis Rev 27(4):545–554

    PubMed  Article  Google Scholar 

  37. 37.

    Jiang WJ, Peng YC, Yang KM (2018) Cellular signaling pathways regulating beta-cell proliferation as a promising therapeutic target in the treatment of diabetes. Exp Ther Med 16(4):3275–3285

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Davis S, Ware MA, Zeiger J, Deardorff MA, Grand K, Grimberg A, Hsu S, Kelsey M, Majidi S, Matthew RP et al (2020) Growth hormone deficiency in megalencephaly-capillary malformation syndrome: an association with activating mutations in PIK3CA. Am J Med Genet A 182(1):162–168

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Cholley F, Trivin C, Sainte-Rose C, Souberbielle JC, Cinalli G, Brauner R (2001) Disorders of growth and puberty in children with non-tumoral hydrocephalus. J Pediatr Endocrinol Metab 14(3):319–327

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Demirbilek H, Hussain K (2017) Congenital hyperinsulinism: diagnosis and treatment update. J Clin Res Pediatr Endocrinol 9(Suppl 2):69–87

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Minute M, Patti G, Tornese G, Faleschini E, Zuiani C, Ventura A (2015) Sirolimus therapy in congenital hyperinsulinism: a successful experience beyond infancy. Pediatrics 136(5):e1373–e1376

    PubMed  Article  Google Scholar 

  42. 42.

    Güemes M, Shah P, Roženková K, Gilbert C, Morgan K, Hussain K (2016) Severe hyperinsulinaemic hypoglycaemia in Beckwith-Wiedemann syndrome due to uniparental disomy. Horm Res Paediatr 85(5):353–357

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Kamien B, Ronan A, Poke G, Sinnerbrink I, Baynam G, Ward M, Gibson WT, Dudding-Byth T, Scott RJ (2018) A clinical review of generalized overgrowth syndromes in the era of massively parallel sequencing. Mol Syndromol 9(2):70–82

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Smpokou P, Fox VL, Tan WH (2015) PTEN hamartoma tumour syndrome: early tumour development in children. Arch Dis Child 100(1):34–37

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evelina Maines.

Ethics declarations

Ethics approval and consent to participate

The latest revision of the Helsinki Declaration as well as the Oviedo Declaration was the basis for the ethical conduct of the study. The study protocol was designed and conducted to ensure adherence to the principles and procedures of good clinical practice and to comply with the Italian laws. Written informed consent for the publication of the clinical details and clinical images was obtained from the parents of patient 2. Written informed consent for the publication of the clinical details was obtained from the parents of patient 1. A copy of the consent forms is available for review from the Editor of this journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• PI3K/AKT/mTOR signaling pathway defects were first linked to hypoglycemia in 2011. Up to now, variants in seven genes of the PI3K/AKT/mTOR pathway have been associated with hypoglycemia: AKT2, AKT3, PIK3CA, PIK3R2, PPP2R5D, CCND2 and PTEN.

• Reports of recurrent hypoglycemias in patients with defects in this pathway are increasing. Nevertheless, defects of the PI3K/AKT/mTOR signaling pathway are not usually considered in the differential diagnosis and targeted hypoglycemia gene panels rarely include PI3K/AKT/mTOR genes. Moreover, detailed data on the biochemical profile of hypoglycemia in these defects are limited.

• Our paper highlights the need to consider PI3K/AKT/mTOR pathway defects in the differential diagnosis of hypoglycemia in children with overgrowth, particularly macrocephaly. A review of the literature on hypoglycemia and PI3K/AKT/mTOR signaling pathway defects, with a special focus on the metabolic characterization of hypoglycemia, is included.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maines, E., Franceschi, R., Martinelli, D. et al. Hypoglycemia due to PI3K/AKT/mTOR signaling pathway defects: two novel cases and review of the literature. Hormones (2021). https://doi.org/10.1007/s42000-021-00287-1

Download citation

Keywords

  • PI3K/AKT/mTOR signaling pathway
  • Hypoglycemia
  • Macrocephaly
  • Overgrowth
  • Review