Bone metabolism subgroups identified as hip fracture patients via clustering

Abstract

Purpose

The aim of the study was to describe the bone metabolism status that underlies a hip fracture.

Methods

Estimated glomerular filtration rate (e-GFR), calcium (Ca), phosphorus (P), total (ALP) and bone specific alkaline phosphatase (b-ALP), intact parathyroid hormone (i-PTH), 25-hydroxy-vitamin D (25OHD), total procollagen type I amino-terminal propeptide (PINP), and N-terminal peptide of collagen I (NTx), measured at admission in 272 hip fracture patients, were ex post analyzed by K-means clustering and principal component analysis and were evaluated by a clinician.

Results

Four components, mainly consisting of b-ALP, PINP, ALP, and NTx; e-GFR and P; i-PTH and 25OHD; and Ca explained about 70% of the variability. A total of 184 patients clustered around a centroid (A) with low 25OHD (13.2 ng/ml), well-preserved kidney function (e-GFR=67.19 ml/min/1.73m2), normal Ca, P, i-PTH and bone markers, with the exception of slightly increased NTx (24.82nMBCE). Cluster B (n=70) had increased i-PTH (93.38 pg/ml), moderately decreased e-GFR, very low 25OHD (8.68 ng/dl), and high bone turnover (b-ALP 28.46 U/L, PINP 69.87 ng/ml, NTx 31.3nMBCE). Cluster C (n=17) also had hyperparathyroidism (80.35 pg/ml) and hypovitaminosis D (9.15 ng/ml), low e-GFR(48.89 ml/min/1.73m2), and notably high ALP (173 U/L) and bone markers (b-ALP 44.64 U/L, PINP 186.98 ng/ml, NTx 38.28nMBCE). According to the clinician, 62 cases clearly had secondary hyperparathyroidism.

Conclusions

Based on serum measurements, the dominant patterns of bone metabolism were normal bone turnover with high normal NTx, and secondary hyperparathyroidism related to chronic kidney disease and hypovitaminosis D. The bone formation markers, e-GFR, NTx, and P composed the most important factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Available after request.

References

  1. 1.

    Lai JK, Lucas RM, Clements MS, Rodam AW, Banks E (2010) Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomized controlled trials and observational studies. BMC Public Health 10:331. https://doi.org/10.1186/1471-2458-10331

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    McDonald D, Lau E, Chan ELP, Mak T, Woo J, Leung PC, Swaminathan R (1992) Serum intact parathyroid hormone levels in elderly Chinese females with hip fracture. Calcif Tissue Int 51:412–414. https://doi.org/10.1007/BF00296672

    Article  Google Scholar 

  3. 3.

    Akesson K, Vergnaud P, Gineyts E, Delmas PD, Obrant KJ (1993) Impairment of bone turnover in elderly women with hip fracture. Calcif Tissue Int 53(3):162–169. https://doi.org/10.1007/BF01321832

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    LeBoff MS, Kohlmeier L, Hurwitz S, Franklin J, Wright J, Glowacki J (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA 281(16):1505–1151. https://doi.org/10.1001/jama.281.16.1505

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Sakuma M, Endo N, Oinuma T et al (2006) Vitamin D and intact PTH status in patients with hip fracture. Osteoporos Int 17(11):1608–1614. https://doi.org/10.1007/s00198-006-0167-1

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Di Monaco M, Castiglioni C, Vallero F et al (2014) Parathyroid-hormone variance is only marginally explained by a panel of determinants: a cross-sectional study of 909 hip-fracture patients. J Bone Miner Metab 32:573–579. https://doi.org/10.1007/s00774-013-0532-z

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Nuti R, Martini G, Valenti R et al (2004) Vitamin D status and bone turnover in women with acute hip fracture. Clin Orthop Relat Res 422:208–213. https://doi.org/10.1097/01.blo.0000129163.97988.06

    Article  Google Scholar 

  8. 8.

    Cooper C, Mc Lauren M, Wood PJ, Coulton L, Kanis JA (1989) Indices of calcium metabolism in women with hip fractures. Bone Miner 5:193–200. https://doi.org/10.1016/0169-6009(89)90096-2

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Phusunti S, Suthutvoravut W, Chotiyarnwong P (2016) The prevalence of Hypovitaminosis D in patients with fragility hip fracture at a single institution in Thailand. J Med Assoc Thail 99(11):1233–1238

    Google Scholar 

  10. 10.

    Sahota O, Gaynor K, Harwood R et al (2001) Hypovitaminosis D and “functional hypoparathyroidism”-the NoNoF (Nottigham Neck of Femur) study. Age Ageing 30:467–472. https://doi.org/10.1093/ageing/30.6.467

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sempos CT, Heijboer AC, Bikle DD et al (2018) Vitamin D assays and the definition of hypovitaminosis D: results from the First Conference on Controversies in Vitamin D. Brit J Clin Pharmacol 84:2194–2207. https://doi.org/10.1111/bcp.13652

    CAS  Article  Google Scholar 

  12. 12.

    Compston JE, Vedi S, Croucher PI (1991) Low prevalence of osteomalacia in elderly patients with hip fracture. Age Ageing 20:132–134. https://doi.org/10.1093/ageing/20.2.132

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Aaron JE, Stasiak L, Gallaher JC et al (1974) Frequency of osteomalacia and osteoporosis in fractures of the proximal femur. Lancet 303(7851):229–233. https://doi.org/10.1016/s0140-6736(74)92545-8

    Article  Google Scholar 

  14. 14.

    Hordon LD, Peacock M (1990) Osteomalacia and osteoporosis in femoral neck fracture. Bone Miner 11:247–259. https://doi.org/10.1016/0169-6009(90)90063-I

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Sokoloff L (1978) Occult osteomalacia in American (USA) patients with fracture of the hip. Am J Surg Pathol 2(1):21–30. https://doi.org/10.1097/00000478-197803000-00003

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Lips P, Netelenbos JC, Jongen MJM et al (1982) Histomorphometric profile and vitamin D status in patients with femoral neck fracture. Metabol Bone Dis Rel Res 4:85–93. https://doi.org/10.1016/0221-8747(82)90021-2

    CAS  Article  Google Scholar 

  17. 17.

    Klawansky S, Komaroff E, Cavanaugh PF et al (2003) Relationship between age, renal function and bone mineral density in the US population. Osteoporos Int 14:570–577. https://doi.org/10.1007/s00198-003-1435-y

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Casey M, Walsh B (2004) Chronic renal failure in hip fracture patients. Osteoporos Int 15:420. https://doi.org/10.1007/s00198-003-1575-0

    Article  PubMed  Google Scholar 

  19. 19.

    Conley RB, Adib G, Adler RA et al (2020) Secondary fracture prevention: consensus clinical recommendations from a multistakeholder Coalition. J Bone Miner Res 35(1):36–52. https://doi.org/10.1002/jbmr.3877

    Article  PubMed  Google Scholar 

  20. 20.

    Levey et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Azur MJ, Stuart EA, Frangakis C, Lea PJ (2011) Multiple imputation by chained equations; what it is and how does it work? Int J Methods Psychiatr Res 20(1):40–49. https://doi.org/10.1002/mpr.329

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ng K, St John A, Bruce DG (1994) Secondary hyperparathyroidism, vitamin D deficiency and hip fracture: importance of sampling times after fracture. Bone Miner 25:103–109. https://doi.org/10.1016/s0169-6009(08)80252-8

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ketteler M, Block GA, Evenepoel P et al (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (VCKD-MB) guideline update: what’s changed and why it matters. Kidney Int 92:26–36. https://doi.org/10.1016/j.kint.2017.04.006

    Article  PubMed  Google Scholar 

  24. 24.

    Menendez-Colino R, Alarcon T, Gotor P, Queipo R, Ranirez-Martin R, Moterom A, Gonzalez-Montalvo JL (2018) Baseline and pre-operative 1-year mortality risk factors in a cohort of 509 hip fracture patients consecutively admitted to a co-managed orthogeriatric unit (FONDA Cohort). Injury 49(3):656–661. https://doi.org/10.1016/j.injury.2018.01.003

    Article  PubMed  Google Scholar 

  25. 25.

    Madsen CM, Jorgensen HL, Lind B, Ogarrio HW, Riis T, Schwarz P, Duus BR, Lauritzen JB (2012) Secondary hyperparathyroidism and mortality in hip fracture patients compared to a control group from general practice. Injury 43:1052–1057. https://doi.org/10.1016/j.injury.2011.12.025

    Article  PubMed  Google Scholar 

  26. 26.

    Tosun B, Atmaca H, Gok U (2010) Operative treatment of hip fractures in patients receiving hemodialysis. Musculoskelet Surg 94:71–75. https://doi.org/10.1007/s12306-010-0080-9

    Article  PubMed  Google Scholar 

  27. 27.

    Di Monaco M, Vallero F, di Monaco R, Mautino F, Cavanna A (2004) Primary hyperparathyroidism in elderly patients with hip fracture. J Bone Miner Metab 22:491–495. https://doi.org/10.1007/s00774-004-0512-4

    Article  PubMed  Google Scholar 

  28. 28.

    Ikegami S, Kamimura M, Nakagawa H et al (2009) Comparison in bone turnover markers during early healing of femoral neck fracture and trochanteric fracture in elderly patients. Orthop Rev 1e:21. https://doi.org/10.4081/or.2009.e21

    Article  Google Scholar 

  29. 29.

    Tsangari H, Findlay DM, Zannetino ACW et al (2006) Evidence for reduced formation surface relative to bone resorption surface in female femoral fragility fracture patients. Bone 39:1226–1235. https://doi.org/10.1016/j.bone.2006.06.019

    Article  PubMed  Google Scholar 

  30. 30.

    Parfitt AM (2003) Renal bone disease: a new conceptual framework for the interpretation of bone histomorphometry. Curr Opin Nephrol Hypertens 12:387–403. https://doi.org/10.1097/00041552-200307000-00007

    Article  PubMed  Google Scholar 

  31. 31.

    Craver L, Paz Marco M, Martinez I et al (2007) Mineral metabolism parameters throughout chronic kidney disease stages 1-5- achievement of K/DOQI target ranges. Nephrol Dial Transplant 22:1171–1176. https://doi.org/10.1093/ndt/gfl718

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232. https://doi.org/10.1681/ASN.2005111194

    Article  PubMed  Google Scholar 

  33. 33.

    Kinsella S, Chavrimooto S, Molloy MG, Eustace JA (2010) Moderate chronic kidney disease in women is associated with fracture occurrence independently of osteoporosis. Nephron Clin Pract 116:c256–c262. https://doi.org/10.1159/000317207

    Article  PubMed  Google Scholar 

  34. 34.

    Dukas L, Schacht E, Stahelin HB (2005) In elderly men and women treated for osteoporosis a low creatinine clearance of <65 ml/min is a risk factor for falls and fractures. Osteoporos Int 16:1683–1690. https://doi.org/10.1007/s00198-005-1903-7

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Elliott MJ, James MT, Quinn RR et al (2013) Estimated GFR and fracture risk: a population-based study. Clin J Am Soc Nephrol 31:1367–1376. https://doi.org/10.2215/CJN.09130912

    Article  Google Scholar 

  36. 36.

    Miller PD, Roux C, Boonen S et al (2005) Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockroft and Gault method: a poled analysis of nine clinical trials. J Bone Miner Res 20(12):2105–2115. https://doi.org/10.1359/JBMR.050817

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Liu W-C, Yen J-F, Lang C-L et al (2013) Review article. Bisphosphonates in CKD patients with low bone mineral density. Sci World J 2013:837573. https://doi.org/10.1155/2013/837573

    CAS  Article  Google Scholar 

  38. 38.

    Miller PD (2007) Is there a role for bisphosphonates in chronic kidney disease? Semin Dial 20(3):186–190. https://doi.org/10.1111/j.1525-139X.2007.0027.x

    Article  PubMed  Google Scholar 

  39. 39.

    Cipriani C, Pepe J, Clementelli C et al (2017) Effect of a single intravenous zoledronic acid administration on biomarkers of acute kidney injury (AKI) in patients with osteoporosis: a pilot study. Br J Clin Pharmacol 83:2266–2273. https://doi.org/10.1111/bcp.13332

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Priemel M, Von Domarus C, Klatte TO et al (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–310. https://doi.org/10.1359/jbmr.090728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Papapetrou PD, Triantaphyllopoulou M, Karga H, Zagarelos P, Aloumanis K, Kostakioti E, Vaiopoulos G (2007) Vitamin D deficiency in the elderly in Athens, Greece. J Bone Miner Metab 25(3):198–203. https://doi.org/10.1007/s00774-006-0746-4

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Goula T, Kouskoukis A, Droso G, Tslepis AS, Ververidis A, Valkanis C, Zisimopoulos A, Kazakos K (2015) Vitamin D status in patients with knee or hip osteoarthritis in a Mediterranean country. J Orthop Traumatol 16(1):35–39. https://doi.org/10.1007/s10195-014-0322-y

    Article  PubMed  Google Scholar 

  43. 43.

    Seitz S, Koehne T, Ries C et al (2013) Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fractures. Osteoporos Int 24:641–649. https://doi.org/10.1007/s100198-012-2011-0

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Lorentzon M, Branco J, Brandi ML et al (2019) Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther 36:2811–2824. https://doi.org/10.1007/s12325-019-01063-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic-kidney disease-mineral and bone disorder (CKD-MBD) (2009). Kidney Int Suppl 113:S1-130. https://doi.org/10.1038/ki.2009.188.

  46. 46.

    Souberbielle JC, Brazier F, Piketty ML et al (2017) How the reference values for serum PTH concentration are or should be established? J Endocrinol Investig 40:241–256. https://doi.org/10.1007/s40618-016-0553-2

    CAS  Article  Google Scholar 

  47. 47.

    KDIGO Clinical practice guideline update for the diagnosis, evaluation, prevention and treatment of chronic kidney disease-mineral and bone disorder (CK-MBD) (2017). Kidney Intern Suppl 7:1-59. https://doi.org/10.1016/j.kisu.2017.04.001.

  48. 48.

    Amouzougan A, Chopin F, Laporte S et al (2012) Functional hypoparathyroidism in postmenopausal women with fragility fracture. Joint Bone Spine 79:170–175. https://doi.org/10.1016/j.jbspin.2011.04.005

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Bjorkman MP, Sorva AJ, Risteli J, Tilvis RS (2009) Low parathyroid hormone levels in bedridden geriatric patients with vitamin D deficiency. J Am Geriatr Soc 57:1045–1050. https://doi.org/10.1111/j.1532-5415.2009.02257.x

    Article  PubMed  Google Scholar 

  50. 50.

    Souberbielle J-C, Lawson-Body E, Hammadi B et al (2003) The use in clinical practice of parathyroid hormone normative values established in vitamin D- sufficient subjects. J Clin Endocrinol Metab 88(8):3501–3504. https://doi.org/10.1210/jc.2003-030097

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Sato Y, Kaji M, Higuchi F et al (2001) Changes in bone and calcium metabolism following hip fracture in elderly patients. Osteoporos Int 12:445–449. https://doi.org/10.1007/s001980170088

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special acknowledgments go to Andreas Morakis, Konstantinos Sarantos, Konstantinos Antonis, Konstantinos Skagias, Panagiota Giannikou, and Ioannis Giannakopoulos who recruited the patients and collected the samples. Software and formal analysis were kindly performed by Kleanthis Kleanthous, Analyst, and IT Architect. Special thanks to Maria Ragoussi and Maria Tsipra for handling the samples and performing the laboratory measurements.

Code availability

The open source R platform version 3.6.3 along with various open source R libraries for statistics and graphs (e.g., factoextra, cluster, ggplot2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evangelia Papakitsou.

Ethics declarations

Ethics approval and consent to participate

Approval was obtained from the Scientific Council of KAT hospital (20/ 12-10-2004). The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Informed consent was obtained from all individual participants or the supporter in case of dementia included in the study. Information is anonymized and the article does not include images that may identify any participant.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papakitsou, E., Paspati, I., Rizou, S. et al. Bone metabolism subgroups identified as hip fracture patients via clustering. Hormones (2021). https://doi.org/10.1007/s42000-021-00276-4

Download citation

Keywords

  • Chronic kidney disease
  • Clustering
  • bone markers
  • Alkaline phosphatase
  • Hyperparathyroidism
  • 25hydroxyD