Update on pituitary adenomas in the 2017 World Health Organization classification: innovations and perspectives

Abstract

The World Health Organization (WHO) classifications of tumors offer invaluable support in the diagnosis of tumors, with every new edition including novel information and diagnostic updates. The new 2017 WHO Classification of Tumors of Endocrine Organs, 4th edition, includes innovations in both terminology and diagnostic guidelines for pituitary adenomas, along with new entities, molecular information, and novel treatment modalities. The recommended reporting system of pituitary adenomas is based on morphology and assessment of the hormonal content by immunohistochemistry. Electron microscopy and immunohistochemistry for Ki-67 and p53 and transcription factors, while presenting additional information, are not recommended for routine diagnosis. Other markers may also yield information of prognostic and predictive significance. In sum, the 2017 WHO classification provides pathologists and clinicians with new and comprehensive information of great use for the diagnosis and treatment of pituitary tumors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Lloyd RV, Osamura RY, Klöppel G, Rosai J (2017) WHO Classification of tumours of endocrine organs, 4th edn. IARC, Lyon

    Google Scholar 

  2. 2.

    Lloyd RV, Osamura RY (1997) Transcription factors in normal and neoplastic pituitary tissues. Microsc Res Tech 39:168–181. https://doi.org/10.1002/(SICI)1097-0029(19971015)39:2<168::AID-JEMT8>3.0.CO;2-H

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Nishioka H, Inoshita N, Mete O et al (2015) The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr Pathol 26:349–355. https://doi.org/10.1007/s12022-015-9398-z

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Asa SL, Ezzat S (2004) Molecular basis of pituitary development and cytogenesis. Front Horm Res 32:1–19. https://doi.org/10.1159/000079035

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    DeLellis RA, Heitz PU, Lloyd RV, Eng C (2004) World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs, 3rd edn. IARC Press, Lyon

    Google Scholar 

  6. 6.

    Osamura RY, Lopes MBS, Grossman A, Kontogeorgos G, Trouillas J (2017) Introduction. In: Lloyd RV, Osamura R, Klöppel G (eds) World Health Organization classification of tumours of the pituitary gland, 3rd edn. IARC Press, Lyon, p 13

    Google Scholar 

  7. 7.

    Thodou E, Argyrakos T, Kontogeorgos G (2007) Galectin-3 as a marker distinguishing functioning from silent corticotroph adenomas. Hormones 6(3):227–232

    PubMed  Google Scholar 

  8. 8.

    Kontogeorgos G, Thodou E (2016) The gonadotroph origin of null cell adenomas. Hormones 15(2):243–247. https://doi.org/10.14310/horm.2002.1652

    Article  PubMed  Google Scholar 

  9. 9.

    Kontogeorgos G, Thodou E (2019) Double adenomas of the pituitary: an imaging, pathological, and clinical diagnostic challenge. Hormones 18(3):251–254. https://doi.org/10.1007/s42000-019-00126-4

    Article  PubMed  Google Scholar 

  10. 10.

    Horvath E, Kovacs K, Scheithauer BW (1999) Pituitary hyperplasia. Pituitary 1(3-4):169–179. https://doi.org/10.1023/a:1009952930425

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Scheithauer BW, Kovacs K, Horvath E et al (2008) Pituitary blastoma. Acta Neuropathol 116(6):657–666. https://doi.org/10.1007/s00401-008-0388-9

    Article  PubMed  Google Scholar 

  12. 12.

    Brenneman M, Field A, Yang J et al (2015) Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in pleuropulmonary blastoma / DICER1 syndrome: a unique variant of the two-hit tumor suppression model. F1000Res 10(4):214. https://doi.org/10.12688/f1000research.6746.2

    Article  Google Scholar 

  13. 13.

    Höfle G, Gasser R, Mohsenipour I, Finkenstedt G (1998) Surgery combined with dopamine agonists versus dopamine agonists alone in long-term treatment of macroprolactinoma: a retrospective study. Exp Clin Endocrinol Diabetes 106(3):211–216. https://doi.org/10.1055/s-0029-1211978

    Article  PubMed  Google Scholar 

  14. 14.

    Stueven AK, Kayser A, Wetz C et al (2019) Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int J Mol Sci 12(20):E3049. https://doi.org/10.3390/ijms20123049

    CAS  Article  Google Scholar 

  15. 15.

    Oda Y, Tanaka Y, Naruse T, Sasanabe R, Tsubamoto M, Funahashi H (2002) Expression of somatostatin receptor and effects of somatostatin analog on pancreatic endocrine tumors. Surg Today 36(8):690–694. https://doi.org/10.1007/s005950200128

    Article  Google Scholar 

  16. 16.

    Landis CA, Masters SB, Spada A et al (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340(6236):692–696. https://doi.org/10.1038/340692a0

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kiseljak-Vassiliades K, Xu M, Mills TS et al (2015) Differential somatostatin receptor (SSTR) 1-5 expression and downstream effectors in histologic subtypes of growth hormone pituitary tumors. Mol Cell Endocrinol 417:73–83. https://doi.org/10.1016/j.mce.2015.09.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Obari A, Sano T, Ohyama K et al (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19(2):82–91. https://doi.org/10.1007/s12022-008-9029-z

    Article  PubMed  Google Scholar 

  19. 19.

    Thodou E, Kontogeorgos G (2020) Somatostatin receptor profile in pituitary thyrotroph adenomas. Clin Neurol Neuropathol 195:105865, Online ahead of print. https://doi.org/10.1016/j.clineuro.2020.105865

    Article  Google Scholar 

  20. 20.

    Syro LV, Rotondo F, Camargo M, Ortiz LD, Serna CA, Kovacs K (2018) Temozolomide and pituitary tumors: current understanding, unresolved issues, and future directions. Front Endocrinol (Lausanne) 9(1-14). https://doi.org/10.3389/fendo.2018.00318

  21. 21.

    Moshkin O, Syro LV, Scheithauer BW et al (2011) Aggressive silent corticotroph adenoma progressing to pituitary carcinoma: the role of temozolomide therapy. Hormones (Athens) 10(2):162–167. https://doi.org/10.14310/horm.2002.1307

    Article  Google Scholar 

  22. 22.

    Kontogeorgos G, Thodou E, Koutouroussiou M, Kaltsas G, Seretis A (2019) MGMT immunohistochemistry in pituitary tumors: controversies with clinical implications. Pituitary 22(6):614–619. https://doi.org/10.1007/s11102-019-00993-5

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Micko ASG, Wöhrer A, Höftberger R, Vila G, Marosi C, Knosp E, Wolfsberger S (2017) MGMT and MSH6 immunoexpression for functioning pituitary macroadenomas. Pituitary 20(6):643–653. https://doi.org/10.1007/s11102-017-0829-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bengtsson D, Schrøder HD, Andersen M et al (2015) Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab 100(4):1689–1698. https://doi.org/10.1210/jc.2014-4350

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Hirohata T, Asano K, Ogawa Y et al (2013) DNAmismatch repair protein (MSH6) correlated with the responses of atypical pituitary adenomas and pituitary carcinomas to temozolomide: the national cooperative study by the Japan Society for Hypothalamic and Pituitary Tumors. J Clin Endocrinol Metab 98(3):1130–1136. https://doi.org/10.1210/jc.2012-2924

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Murakami M, Mizutani A, Asano S et al (2011) A mechanism of acquiring temozolomide resistance during transformation of atypical prolactinoma into prolactin-producing pituitary carcinoma: case report. Neurosurg 68(6):E1761–E1767. https://doi.org/10.1227/NEU.0b013e318217161a

    Article  Google Scholar 

  27. 27.

    Ortiz LD, Syro LV, Scheithauer BW, Ersen A et al (2012) Anti-VEGF therapy in pituitary carcinoma. Pituitary 15(3):445–449. https://doi.org/10.1007/s11102-011-0346-8

    Article  PubMed  Google Scholar 

  28. 28.

    Touma W, Hoosta SL, Peterson RA, Wiernik A, SantaCruz KS, Lou E (2017) Successful treatment of pituitary carcinoma with concurrent radiation, temozolomide, and bevacizumab after resection. J Clin Neurosci 41(7):75–77. https://doi.org/10.1016/j.jocn.2017.02.052

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This paper has been supported by the Pituitary Research Society, a non-profit organization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Kontogeorgos.

Ethics declarations

Conflict of interest

The author is an editorial member and co-author of the WHO Classification of Tumours of Endocrine Organs and panelist of the Consensus meeting, held on April 26–28, 2016 in Lyon, France. The author declares that he has no conflict of interest.

Research involving human participants and/or animals

This report does not contain any research studies with human participants or animals.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kontogeorgos, G. Update on pituitary adenomas in the 2017 World Health Organization classification: innovations and perspectives. Hormones (2021). https://doi.org/10.1007/s42000-020-00269-9

Download citation

Keywords

  • Adenoma
  • Classification
  • Immunohistochemistry
  • Pituitary
  • Treatment