A critical review of the effects of vitamin K on glucose and lipid homeostasis: its potential role in the prevention and management of type 2 diabetes

Abstract

In recent years, our knowledge regarding the physiological role of vitamin K has expanded beyond regulation of coagulation to include many other aspects of human health. In the present review, we aimed to evaluate the existing evidence for beneficial effects of vitamin K on type 2 diabetes and components of the metabolic syndrome as risk factors for cardiovascular disease. Increased dietary intake of vitamin K has been linked to lower incidence of type 2 diabetes mellitus (T2DM), possibly through its enhancement of insulin production and sensitivity. Additionally, higher plasma levels of vitamin K1 have been associated with lower T2DM risk and decreased insulin resistance, and supplementation trials also suggest a positive influence of vitamin K on glucose regulation. Vitamin K might also beneficially affect serum lipids and lipid metabolism. However, the available data remain controversial. Additionally, different studies use different approaches to assess vitamin K status owing to the absence of a generally accepted marker, which further complicates data evaluation. In conclusion, vitamin K possibly improves glucose and lipid metabolism and could be an emerging target in the context of prevention and control of T2DM, insulin resistance, and dyslipidemia.

This is a preview of subscription content, access via your institution.

Abbreviations

T2DM:

Type 2 diabetes mellitus

FFQ:

Food frequency questionnaire

OGTT:

Oral glucose tolerance test

HOMA-IR:

Homeostatic model assessment-insulin resistance

HOMA-β:

Homeostatic model assessment-β cell function

ucOC:

Undercarboxylated osteocalcin

cOC:

Carboxylated osteocalcin

HbA1c:

Glycated hemoglobin

HDL-C:

High-density lipoprotein-cholesterol

TRG:

Triglycerides

References

  1. 1.

    Dam H (1935) The antihaemorrhagic vitamin of the chick. Biochem J 29(6):1273–1285. https://doi.org/10.1042/bj0291273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Almquist HJ (1936) Purification of the antihemorrhagic vitamin by distillation. J Biol Chem 115:589–591

    CAS  Article  Google Scholar 

  3. 3.

    Bolton-Smith C, Price RJ, Fenton ST, Harrington DJ, Shearer MJ (2000) Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br J Nutr 83(4):389–399. https://doi.org/10.1017/S0007114500000490

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Schurgers LJ, Geleijnse JM, Grobbee DE, Pols HAP, Hofman A, Witteman JCM et al (1999) Nutritional intake of vitamins K1 (phylloquinone) and K2 (menaquinone) in the Netherlands. J Nutr Environ Med 9(2):115–122. https://doi.org/10.1080/13590849961717

    CAS  Article  Google Scholar 

  5. 5.

    Suttie JW (1995) The importance of menaquinones in human nutrition. Annu Rev Nutr 15:399–417. https://doi.org/10.1146/annurev.nu.15.070195.002151

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M, Uchino Y et al (2010) Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 468(7320):117–121. https://doi.org/10.1038/nature09464

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Thijssen HH, Drittij-Reijnders MJ (1996) Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br J Nutr 75(1):121–127. https://doi.org/10.1079/bjn19960115

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    McKee RW, Binkley SB, MacCorquodale DW, Thayer SA, Doisy EA (1939) The isolation of vitamins K1 and K2. J Am Chem Soc 61(5):1295. https://doi.org/10.1021/ja01874a507

    CAS  Article  Google Scholar 

  9. 9.

    Rishavy MA, Berkner KL (2012) Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 3(2):135–148. https://doi.org/10.3945/an.111.001719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Oldenburg J, Marinova M, Müller-Reible C, Watzka M (2008) The vitamin K cycle. Vitam Horm 78:35–62. https://doi.org/10.1016/S0083-6729(07)00003-9

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shearer MJ, Newman P (2014) Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 55(3):345–362. https://doi.org/10.1194/jlr.R045559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ho HJ, Shirakawa H, Hirahara K, Sone H, Kamiyama S, Komai M (2019) Menaquinone-4 amplified glucose-stimulated insulin secretion in isolated mouse pancreatic islets and INS-1 rat insulinoma cells. Int J Mol Sci 23:20(8). https://doi.org/10.3390/ijms20081995

    CAS  Article  Google Scholar 

  13. 13.

    Sakamoto N, Wakabayashi I, Sakamoto K (1999) Low vitamin K intake effects on glucose tolerance in rats. Int J Vitam Nutr Res 69(1):27–31. https://doi.org/10.1024/0300-9831.69.1.27

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Khalil A, Youssef GA, Al-Saeed HF (2013) Protective role of vitamin K against impaired glucose homeostasis in ovariectomized exercised and nonexercised rats. Nat Sci 11(12):230–238

    Google Scholar 

  15. 15.

    Hussein AG, Mohamed RH, Shalaby SM, Abd El Motteleb DM (2018) Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition. 47:33–38. https://doi.org/10.1016/j.nut.2017.09.016

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Dihingia A, Ozah D, Ghosh S, Sarkar A, Baruah PK, Kalita J et al (2018) Vitamin K1 inversely correlates with glycemia and insulin resistance in patients with type 2 diabetes (T2D) and positively regulates SIRT1/AMPK pathway of glucose metabolism in liver of T2D mice and hepatocytes cultured in high glucose. J Nutr Biochem 52:103–114. https://doi.org/10.1016/j.jnutbio.2017.09.022

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Sogabe N, Maruyama R, Baba O, Hosoi T, Goseki-Sone M (2011) Effects of long-term vitamin K(1) (phylloquinone) or vitamin K(2) (menaquinone-4) supplementation on body composition and serum parameters in rats. Bone. 48(5):1036–1042. https://doi.org/10.1016/j.bone.2011.01.020

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Pitsillides AA, Blake SM, Glynn LE, Bitensky L, Chayen J (1990) Amelioration by menadione of the experimental chronic immune arthritis in the rabbit. Cell Biochem Funct 8(4):221–226. https://doi.org/10.1002/cbf.290080406

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Reddi K, Henderson B, Meghji S, Wilson M, Poole S, Hopper C et al (1995) Interleukin 6 production by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by naphthoquinone (vitamin K) compounds. Cytokine. 7(3):287–290. https://doi.org/10.1006/cyto.1995.0034

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ohsaki Y, Shirakawa H, Hiwatashi K, Furukawa Y, Mizutani T, Komai M (2006) Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotechnol Biochem 70(4):926–932. https://doi.org/10.1271/bbb.70.926

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Shea MK, Booth SL, Massaro JM, Jacques PF, D’Agostino RB Sr, Dawson-Hughes B et al (2008) Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham Offspring Study. Am J Epidemiol 167(3):313–320. https://doi.org/10.1093/aje/kwm306

    Article  PubMed  Google Scholar 

  22. 22.

    Bellido-Martín L, de Frutos PG (2008) Vitamin K-dependent actions of Gas6. Vitam Horm 78:185–209. https://doi.org/10.1016/S0083-6729(07)00009-X

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Korshunov VA (2012) Axl-dependent signaling: a clinical update. Clin Sci (Lond) 122(8):361–368. https://doi.org/10.1042/CS20110411

    CAS  Article  Google Scholar 

  24. 24.

    Dihingia A, Ozah D, Borah T, Kalita J, Manna P (2020) Gamma-glutamyl–carboxylated Gas6 mediates positive role of vitamin K on lowering hyperglycemia in type 2 diabetes. Ann N Y Acad Sci 1462(1):104–117. https://doi.org/10.1111/nyas.14238

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Bordoloi J, Ozah D, Bora T, Kalita J, Manna P (2019) Gamma-glutamyl carboxylated Gas6 mediates the beneficial effect of vitamin K on lowering hyperlipidemia via regulating the AMPK/SREBP1/PPARα signaling cascade of lipid metabolism. J Nutr Biochem 70:174–184. https://doi.org/10.1016/j.jnutbio.2019.05.006

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Dihingia A, Jatin Kalita J, Manna P (2017) Implication of a novel Gla-containing protein, Gas6 in the pathogenesis of insulin resistance, impaired glucose homeostasis, and inflammation: a review. Diabetes Res Clin Pract 128:74–82. https://doi.org/10.1016/j.diabres.2017.03.026

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    O’Connor EM, Durack E (2017) Osteocalcin: The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism. JNIM. 7:8–13. https://doi.org/10.1016/j.jnim.2017.01.001

    Article  Google Scholar 

  28. 28.

    Lin X, Brennan-Speranza TC, Levinger I, Yeap BB (2018) Undercarboxylated osteocalcin: experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients. 10(7):847. https://doi.org/10.3390/nu10070847

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    Beulens JW (2010) van der A DL, Grobbee DE, Sluijs I, Spijkerman AM, van der Schouw YT. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 33(8):1699–1705. https://doi.org/10.2337/dc09-2302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ibarrola-Jurado N, Salas-Salvadó J, Martínez-González MA, Bulló M (2012) Dietary phylloquinone intake and risk of type 2 diabetes in elderly subjects at high risk of cardiovascular disease. Am J Clin Nutr 96(5):1113–1118. https://doi.org/10.3945/ajcn.111.033498

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Yoshida M, Booth SL, Meigs JB, Saltzman E, Jacques PF (2008) Phylloquinone intake, insulin sensitivity, and glycemic status in men and women. Am J Clin Nutr 88(1):210–215. https://doi.org/10.1093/ajcn/88.1.210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sakamoto N, Nishiike T, Iguchi H, Sakamoto K (1999) Relationship between acute insulin response and vitamin K intake in healthy young male volunteers. Diabetes Nutr Metab 12(1):37–41

    CAS  PubMed  Google Scholar 

  33. 33.

    Santos EAD, Giudici KV, França NAG, Peters BSE, Fisberg RM, Martini LA (2020) Correlations among vitamin K intake, body fat, lipid profile and glucose homeostasis in adults and the elderly. Arch Endocrinol Metab. https://doi.org/10.20945/2359-3997000000230

  34. 34.

    Shim JS, Oh K, Kim HC (2014) Dietary assessment methods in epidemiologic studies. Epidemiol Health 22(36):e2014009. https://doi.org/10.4178/epih/e2014009

    Article  Google Scholar 

  35. 35.

    Centi AJ, Shea MK, Gundberg C, Saltzman E, Kritchevsky S, Asao K, et al. (2015) The association between vitamin K status and markers of insulin resistance in older adults: The Health, Aging and Body Composition Study. Association of vitamin K with insulin resistance and body composition. Tufts Digital Library. http://hdl.handle.net/10427/010806.

  36. 36.

    Ferland G, Sadowski JA, O’Brien ME (1993) Dietary induced subclinical vitamin K deficiency in normal human subjects. J Clin Invest 91(4):1761–1768. https://doi.org/10.1172/JCI116386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Booth SL, Suttie JW (1998) Dietary intake and adequacy of vitamin K. J Nutr 128(5):785–788. https://doi.org/10.1093/jn/128.5.785

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Presse N, Gaudreau P, Greenwood CE, Kergoat MJ, Morais JA, Payette H et al (2012) A single measurement of serum phylloquinone is an adequate indicator of long-term phylloquinone exposure in healthy older adults. J Nutr 142(10):1910–1916. https://doi.org/10.3945/jn.112.164608

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Shearer MJ (1992) Vitamin K metabolism and nutriture. Blood Rev 6(2):92–104. https://doi.org/10.1016/0268-960x(92)90011-e

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Usui Y, Tanimura H, Nishimura N, Kobayashi N, Okanoue T, Ozawa K (1990) Vitamin K concentrations in the plasma and liver of surgical patients. Am J Clin Nutr 51(5):846–852. https://doi.org/10.1093/ajcn/51.5.846

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Zwakenberg SR, Remmelzwaal S, Beulens JWJ, Booth SL, Burgess S, Dashti HS et al (2019) Circulating phylloquinone concentrations and risk of type 2 diabetes: a mendelian randomization study. Diabetes. 68(1):220–225. https://doi.org/10.2337/db18-0543

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Centi AJ, Shea MK, Gundberg C, Booth SL, Saltzman E (2015) Circulating Undercarboxylated Osteocalcin is Not Associated with HOMA-IR. Association of vitamin K with insulin resistance and body composition. Tufts Digital Library. http://hdl.handle.net/10427/010806.

  43. 43.

    Kumar R, Binkley N, Vella A (2010) Effect of phylloquinone supplementation on glucose homeostasis in humans. Am J Clin Nutr 92(6):1528–1532. https://doi.org/10.3945/ajcn.2010.30108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yoshida M, Jacques PF, Meigs JB, Saltzman E, Shea MK, Gundberg C et al (2008) Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 31(11):2092–2096. https://doi.org/10.2337/dc08-1204

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Rasekhi H, Karandish M, Jalali MT, Mohammad-Shahi M, Zarei M, Saki A et al (2015) The effect of vitamin K1 supplementation on sensitivity and insulin resistance via osteocalcin in prediabetic women:a double-blind randomized controlled clinical trial. Eur J Clin Nutr 69(8):891–895. https://doi.org/10.1038/ejcn.2015.17

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Choi HJ, Yu J, Choi H, An JH, Kim SW, Park KS et al (2011) Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care 34(9):e147. https://doi.org/10.2337/dc11-0551

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sakamoto N, Nishiike T, Iguchi H, Sakamoto K (2000) Possible effects of one week vitamin K (menaquinone-4) tablets intake on glucose tolerance in healthy young male volunteers with different descarboxy prothrombin levels. Clin Nutr 19(4):259–263. https://doi.org/10.1054/clnu.2000.0102

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Shea MK, Booth SL, Gundberg CM, Peterson JW, Waddell C, Dawson-Hughes B et al (2010) Adulthood obesity is positively associated with adipose tissue concentrations of vitamin K and inversely associated with circulating indicators of vitamin K status in men and women. J Nutr 140(5):1029–1034. https://doi.org/10.3945/jn.109.118380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dam V, Dalmeijer GW, Vermeer C, Drummen NE, Knapen MH, van der Schouw YT et al (2015) Association between vitamin K and the metabolic syndrome: a 10-year follow-up study in adults. J Clin Endocrinol Metab 100(6):2472–2479. https://doi.org/10.1210/jc.2014-4449

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Knapen MHJ, Jardon KM, Vermeer C (2018) Vitamin K-induced effects on body fat and weight: results from a 3-year vitamin K2 intervention study. Eur J Clin Nutr 72(1):136–141. https://doi.org/10.1038/ejcn.2017.146

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Pan Y, Jackson RT (2009) Dietary phylloquinone intakes and metabolic syndrome in US young adults. J Am Coll Nutr 28(4):369–379. https://doi.org/10.1080/07315724.2009.10718099

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Kolahi S, Pourghassem GB, Mesgari AM, Asghari JM, Ghamarzad SN (2015) Effects of phylloquinone supplementation on lipid profile in women with rheumatoid arthritis: a double blind placebo controlled study. Nutr Res Pract 9(2):186–191. https://doi.org/10.4162/nrp.2015.9.2.186

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kristensen M, Kudsk J, Bügel S (2008) Six weeks phylloquinone supplementation produces undesirable effects on blood lipids with no changes in inflammatory and fibrinolytic markers in postmenopausal women. Eur J Nutr 47(7):375–379. https://doi.org/10.1007/s00394-008-0737-4

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Nagasawa Y, Fujii M, Kajimoto Y, Imai E, Hori M (1998) Vitamin K2 and serum cholesterol in patients on continuous ambulatory peritoneal dialysis. Lancet. 351(9104):724. https://doi.org/10.1016/S0140-6736(05)78492-0

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C, Magdeleyns EJ et al (2010) The Circulating inactive form of matrix Gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 5(4):568–575. https://doi.org/10.2215/CJN.07081009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Kiortsis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Varsamis, N.A., Christou, G.A. & Kiortsis, D.N. A critical review of the effects of vitamin K on glucose and lipid homeostasis: its potential role in the prevention and management of type 2 diabetes. Hormones (2021). https://doi.org/10.1007/s42000-020-00268-w

Download citation

Keywords

  • Vitamin K
  • Diabetes
  • Insulin
  • Metabolic syndrome
  • Body fat
  • Cholesterol