Winter G, Hart RA, Charlesworth RPG, Sharpley CF (2018) Gut microbiome and depression : what we know and what we need to know.
Google Scholar
Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans : a systematic review. Ann General Psychiatry:1–10. https://doi.org/10.1186/s12991-017-0138-2
Smith K (2014) Mental health: a world of depression. Nature 515(7526):180–181. https://doi.org/10.1038/515180a
CAS
Article
Google Scholar
Nadeem I, Honours B, Rahman MZ, Ad-dab Y, Akhtar M (2018) Effect of probiotic interventions on depressive symptoms : a narrative review evaluating systematic reviews, 1–9. https://doi.org/10.1111/pcn.12804
Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S (2017) Gut microbiota’s effect on mental health : the gut-brain axis, 7. https://doi.org/10.4081/cp.2017.987
Lerner A, Neidhöfer S, Matthias T (2017) The gut microbiome feelings of the brain : a perspective for non-microbiologists, 1–24. https://doi.org/10.3390/microorganisms5040066
Boorman E, Zajkowska Z, Ahmed R, Pariante CM, Zunszain PA (2016) Crosstalk between endocannabinoid and immune systems : a potential dysregulation in depression?:1591–1604. https://doi.org/10.1007/s00213-015-4105-9
Furness J (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294. https://doi.org/10.1038/nrgastro.2012.32
CAS
Article
PubMed
Google Scholar
Cai T, Shi X, Yuan L, Tang D, Wang F (2019) Fecal microbiota transplantation in an elderly patient with mental depression. Int Psychogeriatr 31(10):1525–1526. https://doi.org/10.1017/s1041610219000115
Article
PubMed
Google Scholar
Marchesi J, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3(1). https://doi.org/10.1186/s40168-015-0094-5
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8(3):92. https://doi.org/10.3390/foods8030092
CAS
Article
PubMed Central
Google Scholar
Food and Agricultural Organization of the United Nations and World Health Organization (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria
Cepeda MS, Ph D, Katz EG, Ph D, Blacketer C (2012) Microbiome-gut-brain axis : probiotics and their association with depression:1–6. https://doi.org/10.1176/appi.neuropsych.15120410
Stilling RM, Van De Wouw M, Clarke G, Stanton C, Tg GD, Cryan JF (2016) The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int. https://doi.org/10.1016/j.neuint.2016.06.011
Dash S, Clarke G, Berk M, Jacka FN (2015) The gut microbiome and diet in psychiatry : focus on depression, 1–6. Briguglio M, Dell’Osso B, Panzica G, Malgaroli A, Banfi G, Zanaboni Dina C et al. Dietary neurotransmitters: a narrative review on current knowledge. Nutrients. 2018;10(5):591.
Ursell L, Metcalf J, Parfrey L, Knight R (2012) Defining the human microbiome. Nutr Rev 70:S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
Article
PubMed
Google Scholar
Lach G, Schellekens H, Dinan TG, Cryan JF (2018) Anxiety, depression, and the microbiome : a role for gut peptides, 36–59
Wang HX, Wang YP (2016) Gut microbiota - brain axis. 129(19):2373–2380. https://doi.org/10.4103/0366-6999.190667
Sudo N (2014) Microbiome, HPA axis and production of endocrine hormones in the gut. https://doi.org/10.1007/978-1-4939-0897-4
Kelly J, Borre Y, O’ Brien C, Patterson E, El Aidy S, Deane J et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019
Article
PubMed
Google Scholar
Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133. https://doi.org/10.1016/j.brainres.2018.03.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao L, Xiong Q, Stary CM, Mahgoub OK, Ye Y, Gu L (2018) Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke. 3:1–11
Slyepchenko A, Maes M, Jacka F, Köhler C, Barichello T, McIntyre R et al (2016) Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom 86(1):31–46. https://doi.org/10.1159/000448957
Article
PubMed
Google Scholar
Evrensel A, Ceylan ME (2015) The gut-brain axis : the missing link in depression. 13(3):239–244
Bolnick D, Snowberg L, Hirsch P et al (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 5:4500. https://doi.org/10.1038/ncomms5500
CAS
Article
PubMed
Google Scholar
Org E, Mehrabian M, Parks BW, Shipkova P, Liu X, Drake TA, Lusis AJ (2016) Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7(4):313–322. https://doi.org/10.1080/19490976.2016.1203502
CAS
Article
PubMed
PubMed Central
Google Scholar
Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi F, Gophna U (2010) Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 61(2):423–428. https://doi.org/10.1007/s00248-010-9787-2
Article
PubMed
Google Scholar
Elderman M, de Vos P, Faas M (2018) Role of microbiota in sexually dimorphic immunity. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.01018
Audet M (2019) Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: does sex matter? Front Neuroendocrinol 54:100772. https://doi.org/10.1016/j.yfrne.2019.100772
CAS
Article
PubMed
Google Scholar
Chen J-J, Zheng P, Liu Y-Y, Zhong X-G, Wang H-Y, Guo Y-J, Xie P (2018a) Sex differences in gut microbiota in patients with major depressive disorder
Sramek JJ, Murphy MF, Cutler NR (2016) Sex differences in the psychopharmacological treatment of depression. Dialogues Clin Neurosci 18(4):447–457
Article
PubMed
PubMed Central
Google Scholar
Peirce J, Alviña K (2019) The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res 97(10):1223–1241. https://doi.org/10.1002/jnr.24476
CAS
Article
PubMed
Google Scholar
Sandhu K, Sherwin E, Schellekens H, Stanton C, Dinan T, Cryan J (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244. https://doi.org/10.1016/j.trsl.2016.10.002
Lai JS, Hiles S, Bisquera A, Hure AJ, Mcevoy M, Attia J (2014) A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. 1 – 3:181–197. https://doi.org/10.3945/ajcn.113.069880.Am
Ong IM, Gonzalez JG, Mcilwain SJ, Sawin EA, Schoen AJ, Adluru N et al (2018) Gut microbiome populations are associated with structure-specific changes in white matter architecture. https://doi.org/10.1038/s41398-017-0022-5
Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D, Boytsov S (2016) Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 32(6):620–627. https://doi.org/10.1016/j.nut.2015.12.037
Alexandre-silva GM, Brito-souza PA, Oliveira ACS, Cerni FA (2018) Acta Tropica The hygiene hypothesis at a glance : early exposures, immune mechanism and novel therapies. Acta Trop 188(May):16–26. https://doi.org/10.1016/j.actatropica.2018.08.032
Article
PubMed
Google Scholar
Clark A (2016) Role of vitamin D in the hygiene hypothesis : the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response. 7(December):1–12. https://doi.org/10.3389/fimmu.2016.00627
Spencer R, Deak T (2017) A users guide to HPA axis research. Physiol Behav 178:43–65. https://doi.org/10.1016/j.physbeh.2016.11.014
CAS
Article
PubMed
Google Scholar
Levy M, Thaiss C, Elinav E (2016) Metabolites: messengers between the microbiota and the immune system. Genes Dev 30(14):1589–1597. https://doi.org/10.1101/gad.284091.116
Valles-Colomer M, Falony G, Darzi Y, Tigchelaar E, Wang J, Tito R et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632. https://doi.org/10.1038/s41564-018-0337-x
CAS
Article
PubMed
Google Scholar
Sun L, Zhang H, Cao Y, Wang C, Zhao C, Wang H et al (2019) Fluoxetine ameliorates dysbiosis in a depression model induced by chronic unpredicted mild stress in mice. Int J Med Sci 16(9):1260–1270. https://doi.org/10.7150/ijms.37322
CAS
Article
PubMed
PubMed Central
Google Scholar
Bondy B (2002) Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 4(1):7–20
Mittal R, Debs LH, Patel AP, Nguyen D (2017) P – Neurotransmitters the critical modulators regulating gut-brain axis. J Cell Physiol 232(9):2359–2372. https://doi.org/10.1002/jcp.25518
Mawe G, Hoffman J (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10(8):473–486. https://doi.org/10.1038/nrgastro.2013.105
CAS
Article
PubMed
PubMed Central
Google Scholar
Bellono NW, Bayrer JR, Leitch DB, Brierley SM, Ingraham HA, Julius D et al (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170(1):185–198.e16. https://doi.org/10.1016/j.cell.2017.05.034
Holzer P, Farzi A (2014) Neuropeptides and the microbiota- gut-brain axis, 195–219. https://doi.org/10.1007/978-1-4939-0897-4
Jameson K, Hsiao E (2018) Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci 41(7):413–414. https://doi.org/10.1016/j.tins.2018.04.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney R, Shanahan F et al (2012) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673. https://doi.org/10.1038/mp.2012.77
CAS
Article
PubMed
Google Scholar
Torii K, Uneyama H, Nakamura E (2013) Physiological roles of dietary glutamate signaling via gut – brain axis due to efficient digestion and absorption. 442–451. https://doi.org/10.1007/s00535-013-0778-1
Bravo J, Forsythe P, Chew M, Escaravage E, Savignac H, Dinan T et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108(38):16050–16055. https://doi.org/10.1073/pnas.1102999108
Article
PubMed
PubMed Central
Google Scholar
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37(5):984–995. https://doi.org/10.1016/j.clinthera.2015.04.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Sudo N (2019) Biogenic amines: signals between commensal microbiota and gut physiology. Front Endocrinol 10. https://doi.org/10.3389/fendo.2019.00504
Traina G (2019) Mast cells in gut and brain and their potential role as an emerging therapeutic target for neural diseases. Front Cell Neurosci 13. https://doi.org/10.3389/fncel.2019.00345
Sharkey KA, Wiley JW (2016) Reviews in basic and clinical gastroenterology and hepatology the role of the endocannabinoid system in the brain – gut axis. Gastroenterology 151(2):252–266. https://doi.org/10.1053/j.gastro.2016.04.015
CAS
Article
PubMed
Google Scholar
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(1):263–275. https://doi.org/10.1113/jphysiol.2004.063388
CAS
Article
PubMed
PubMed Central
Google Scholar
Cryan J, Dinan T (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346
CAS
Article
PubMed
Google Scholar
Zhou D, Li Y, Tian T, Quan W, Wang L, Shao Q (2017) Role of the endocannabinoid system in the formation and development of depression. Pharmazie 72:435–439
CAS
PubMed
Google Scholar
Katzman MA, Furtado M, Anand L (2016) Targeting the endocannabinoid system in psychiatric illness. 36(6):691–703. https://doi.org/10.1097/JCP.0000000000000581
Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. 27(43):11700–11711. https://doi.org/10.1523/JNEUROSCI.1636-07.2007
Cipolla-Neto J, Amaral F (2018) Melatonin as a hormone: new physiological and clinical insights. Endocr Rev 39(6):990–1028. https://doi.org/10.1210/er.2018-00084
Article
PubMed
Google Scholar
Newhouse P, Albert K (2015) Estrogen , stress , and depression a neurocognitive model. 72(7):727–729
Virili C, Centanni M (2014) Does microbiota composition affect thyroid homeostasis? Endocrine 49(3):583–587. https://doi.org/10.1007/s12020-014-0509-2
CAS
Article
PubMed
Google Scholar
Weltens, N., Iven, J., Van Oudenhove, L., & Kano, M. (2018). The gut-brain axis in health neuroscience: implications for functional gastrointestinal disorders and appetite regulation. Annals Of The New York Academy Of Sciences, 1428(1), 129–150. https://doi.org/10.1111/nyas.13969
Satyanarayanan S, Su H, Lin Y, Su K (2018) Circadian rhythm and melatonin in the treatment of depression. Curr Pharm Des 24(22):2549–2555. https://doi.org/10.2174/1381612824666180803112304
CAS
Article
PubMed
Google Scholar
Sun X, Wang M, Wang Y, Lian B, Sun H, Wang G et al (2017) Melatonin produces a rapid onset and prolonged efficacy in reducing depression-like behaviors in adult rats exposed to chronic unpredictable mild stress. Neurosci Lett 642:129–135. https://doi.org/10.1016/j.neulet.2017.01.015
CAS
Article
PubMed
Google Scholar
Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Neuroscience letters butyrate, neuroepigenetics and the gut microbiome : can a high fiber diet improve brain health? Neurosci Lett 625:56–63. https://doi.org/10.1016/j.neulet.2016.02.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X (2018) Butyrate : a double-edged sword for health? (16):21–29. https://doi.org/10.1093/advances/nmx009
Caspani G, Kennedy S, Foster J, Swann J (2019) Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microbial. Cell 6(10):454–481. https://doi.org/10.15698/mic2019.10.693
CAS
Article
Google Scholar
Kohler O, Krogh J, Mors O, Eriksen Benros M (2016) Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol 14(7):732–742. https://doi.org/10.2174/1570159x14666151208113700
CAS
Article
PubMed
PubMed Central
Google Scholar
Berk M, Williams L, Jacka F, O’Neil A, Pasco J, Moylan S et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11(1). https://doi.org/10.1186/1741-7015-11-200
Koopman M, El Aidy S (2017) Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr Opin Psychiatry 30(5):369–377. https://doi.org/10.1097/yco.0000000000000350
Article
PubMed
Google Scholar
Leonard B (2017) Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatrica 30(1):1–16. https://doi.org/10.1017/neu.2016.69
Article
PubMed
Google Scholar
Miller A, Maletic V, Raison C (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. https://doi.org/10.1016/j.biopsych.2008.11.029
CAS
Article
PubMed
PubMed Central
Google Scholar
Foster JA, Neufeld KM (2013) Gut – brain axis : how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–312. https://doi.org/10.1016/j.tins.2013.01.005
Maqsood R, Stone TW (2016) The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochemical Research. https://doi.org/10.1007/s11064-016-2039-1
Kuo P, Chung YE (2018) Moody microbiome : challenges and chances. J Formos Med Assoc 17. https://doi.org/10.1016/j.jfma.2018.09.004
Marlicz W, Misera A, Zydecka KS (2018) Microbiome — the missing link in the gut-brain axis : focus on its role in gastrointestinal and mental health. https://doi.org/10.3390/jcm7120521
Aslam H, Green J, Jacka F, Collier F, Berk M, Pasco J, Dawson S (2018) Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr Neurosci 1–13. https://doi.org/10.1080/1028415x.2018.1544332
Liu R, Walsh R, Sheehan A (2019) Prebiotics and probiotics for depression and anxiety: A systematic review and metaanalysis of controlled clinical trials. Neurosci Biobehav Rev 102:13–23. https://doi.org/10.1016/neubiorev.2019.03.023
Goh K, Liu Y, Kuo P, Chung Y, Lu M, Chen C (2019) Effect of probiotics on depressive symptoms: a meta-analysis of human studies. Psychiatry Res 112568. https://doi.org/10.1016/j.psychres.2019.112568
Paiva I, Duarte-Silva E, Peixoto C (2020) The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol 34:1–18. https://doi.org/10.1016/j.euroneuro.2020.03.006
CAS
Article
PubMed
Google Scholar
Azpiroz F, Dubray C, Bernalier-Donadille A, Cardot J-M, Accarino A, Serra J, Wagner A, Respondek F, Dapoigny M (2017) Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterol Motil 29:e12911. https://doi.org/10.1111/nmo.12911
CAS
Article
Google Scholar
Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K (n.d.) Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr S0261561418301614
Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29:508–518. https://doi.org/10.1111/j.1365-2036.2008.03911.x
CAS
Article
PubMed
Google Scholar
Smith AP (2005) The concept of well-being: relevance to nutrition research. Br J Nutr 93:1–5. https://doi.org/10.1186/ar1506
Article
Google Scholar
Smith AP, Sutherl D, Hewlett P (2015) An investigation of the acute effects of oligofructose-enriched inulin on subjective wellbeing, mood and cognitive performance. Nutrients 7:8887–8896. https://doi.org/10.3390/nu7115441
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Yao W, Dong C, Yang C, Ren Q, Ma M, Hashimoto K (2017) Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions : a possible role of gut – microbiota – brain axis, (April), 1–8. https://doi.org/10.1038/tp.2017.112
Book
Google Scholar
Yang C, Qu Y, Fujita Y, Ren Q (2017) Possible role of the gut microbiota – brain axis in the antidepressant effects of ( R ) - ketamine in a social defeat stress model. Transl Psychiatry. https://doi.org/10.1038/s41398-017-0031-4
Fond G, Lagier J, Honore S, Lancon C, Korchia T, Verville P et al (2020) Microbiota-orientated treatments for major depression and schizophrenia. Nutrients 12(4):1024. https://doi.org/10.3390/nu12041024
CAS
Article
PubMed Central
Google Scholar
Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism (February), 1–11. https://doi.org/10.1038/mp.2016.44
Book
Google Scholar
Kurokawa S, Kishimoto T, Mizuno S, Masaoka T, Naganuma M, Liang K et al (2018) The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: an open-label observational study. J Affect Disord 235:506–512. https://doi.org/10.1016/j.jad.2018.04.038
Article
PubMed
Google Scholar
Banks W (2006) The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol Behav 89(4):472–476. https://doi.org/10.1016/j.physbeh.2006.07.004
CAS
Article
PubMed
Google Scholar
Fuchs E, Flïugge G (2006) Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci 8(3):323–333
Article
PubMed
PubMed Central
Google Scholar