Advertisement

Hormones

pp 1–13 | Cite as

The role of cellular senescence in diabetes mellitus and osteoporosis: molecular pathways and potential interventions

  • Georgios Giovos
  • Maria P. YavropoulouEmail author
  • John G. Yovos
Review Article

Abstract

The improving effectiveness of health care leads inevitably to a rapid increase in the elderly population worldwide. At advanced ages, however, people experience chronic disabilities, which significantly increase the social and economic burden while curtailing survival, independence, and quality of life of the aging population. As aging is a multifactorial process, apart from genetic predisposition, other environmental factors, such as chronic sterile inflammation and cellular senescence, contribute as crucial participants and have been targeted to reverse their deleterious effects on tissue homeostasis and functional integrity. Cellular senescence refers to the essentially irreversible inhibition of cellular proliferation when cells are subjected to extrinsic or endogenous stress. Although the process of cellular senescence has long been known, recent evidence demonstrated that it characterizes many aging phenotypes and that elimination of senescent cells at the tissue level can improve age-related tissue dysfunction. These observations have renewed scientific interest in possible therapeutic interventions. Two major chronic diseases associated with aging that impose an enormous burden on global health systems are type 2 diabetes and osteoporosis. This review presents current data on (i) the underlying molecular mechanisms of cellular senescence, (ii) its relationship to these two endocrine diseases that are today prevalent worldwide, and (iii) future prospects of targeted intervention with the aim of simultaneously improving the progression and prognosis of these serious problems of aging.

Keywords

Cellular senescence Aging Senolytics Senomorphics Diabetes Osteoporosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Goldman DP, Cutler D, Rowe JW et al (2013) Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff (Millwood) 32:1698–1705CrossRefGoogle Scholar
  2. 2.
    Kirkland JL (2013) Translating advances from the basic biology of aging into clinical application. Exp Gerontol 48:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    LeBrasseur NK, Tchkonia T, Kirkland JL (2015) Cellular senescence and the biology of aging, disease, and Frailty. Nestle Nutr Inst Workshop Ser 83:11–18PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tchkonia T, Morbeck DE, Von Zglinicki T et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Roos CM, Zhang B, Palmer AK et al (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15:973–977PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Young AR, Narita M, Narita M (2013) Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol 965:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132:681–696PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Park CB, Larsson NG (2011) Mitochondrial DNA mutations in disease and aging. J Cell Biol 193:809–818PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Talens RP, Christensen K, Putter H et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11:694–703PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36:2–14PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Narita M, Nunez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295:525–538PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770CrossRefGoogle Scholar
  21. 21.
    Benhamed M, Herbig U, Ye T, Dejean A, Bischof O (2012) Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14:266–275PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Young AP, Schlisio S, Minamishima YA et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Evan GI, d’Adda di Fagagna F (2009) Cellular senescence: hot or what? Curr Opin Genet Dev 19:25–31PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Passos JF, Simillion C, Hallinan J, Wipat A, von Zglinicki T (2009) Cellular senescence: unravelling complexity. Age (Dordr) 31:353–363CrossRefGoogle Scholar
  26. 26.
    Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O (2010) p38(MAPK) in the senescence of human and murine fibroblasts. Adv Exp Med Biol 694:126–137PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Macip S, Igarashi M, Fang L et al (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Demaria M, Ohtani N, Youssef SA et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hayakawa T, Iwai M, Aoki S et al (2015) SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10:e0116480PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Herranz N, Gallage S, Mellone M et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17:1205–1217PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Coppe JP, Patil CK, Rodier F et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5:e9188PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Stow JL, Murray RZ (2013) Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 24:227–239PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ruggiano A, Foresti O, Carvalho P (2014) Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869–879PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cormenier J, Martin N, Desle J et al (2018) The ATF6alpha arm of the unfolded protein response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Mech Ageing Dev 170:82–91PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology 55:550–558PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Strycharz J, Drzewoski J, Szemraj J, Sliwinska A (2017) Is p53 involved in tissue-specific insulin resistance formation? Oxidative Med Cell Longev 2017:9270549Google Scholar
  41. 41.
    Correia-Melo C, Passos JF (2015) Mitochondria: are they causal players in cellular senescence? Biochim Biophys Acta 1847:1373–1379PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kassi E, Papavassiliou AG (2008) Could glucose be a proaging factor? J Cell Mol Med 12:1194–1198PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yokoi T, Fukuo K, Yasuda O et al (2006) Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 55:1660–1665PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cramer C, Freisinger E, Jones RK et al (2010) Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19:1875–1884PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C (2007) Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129:473–484PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Liu J, Huang K, Cai GY et al (2014) Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal 26:110–121PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chan SS, Twigg SM, Firth SM, Baxter RC (2005) Insulin-like growth factor binding protein-3 leads to insulin resistance in adipocytes. J Clin Endocrinol Metab 90:6588–6595PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kim KS, Seu YB, Baek SH et al (2007) Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 18:4543–4552PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Markowski DN, Thies HW, Gottlieb A, Wenk H, Wischnewsky M, Bullerdiek J (2013) HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr 8:449–456PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Davalos AR, Kawahara M, Malhotra GK et al (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201:613–629PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Stern DM, Yan SD, Yan SF, Schmidt AM (2002) Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 1:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Coppe JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Spranger J, Kroke A, Mohlig M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Uchida T, Nakamura T, Hashimoto N et al (2005) Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 11:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tavana O, Puebla-Osorio N, Sang M, Zhu C (2010) Absence of p53-dependent apoptosis combined with nonhomologous end-joining deficiency leads to a severe diabetic phenotype in mice. Diabetes 59:135–142PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Helman A, Klochendler A, Azazmeh N et al (2016) p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med 22:412–420PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Parfitt AM (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36(Suppl 1):S123–S128PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Vigneron A, Vousden KH (2010) p53, ROS and senescence in the control of aging. Aging (Albany NY) 2:471–474CrossRefGoogle Scholar
  65. 65.
    Almeida M, Han L, Martin-Millan M et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Farr JN, Fraser DG, Wang H et al (2016) Identification of senescent cells in the bone microenvironment. J Bone Miner Res 31:1920–1929PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Khosla S, Farr JN, Kirkland JL (2018) Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J Clin Endocrinol Metab 103:1282–1290PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Piemontese M, Almeida M, Robling AG et al (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2(17). pii: 93771Google Scholar
  69. 69.
    Kim HN, Chang J, Shao L et al (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693–703PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Manolagas SC (2018) The quest for osteoporosis mechanisms and rational therapies: how far we’ve come, how much further we need to go. J Bone Miner Res 33:371–385PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ishii KA, Fumoto T, Iwai K et al (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Almeida M (2011) Unraveling the role of FoxOs in bone--insights from mouse models. Bone 49:319–327PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    He N, Zhu X, He W, Zhao S, Zhao W, Zhu C (2015) Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells. Biosci Biotechnol Biochem 79:1779–1786PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Yan S, Miao L, Lu Y, Wang L (2019) Sirtuin 1 inhibits TNF-alpha-mediated osteoclastogenesis of bone marrow-derived macrophages through both ROS generation and TRPV1 activation. Mol Cell Biochem 455:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hall BM, Balan V, Gleiberman AS et al (2016) Aging of mice is associated with p16(Ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY) 8:1294–1315CrossRefGoogle Scholar
  81. 81.
    Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55:2284–2292PubMedPubMedCentralGoogle Scholar
  83. 83.
    Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Huffman DM, Justice JN, Stout MB, Kirkland JL, Barzilai N, Austad SN (2016) Evaluating health span in preclinical models of aging and disease: guidelines, challenges, and opportunities for geroscience. J Gerontol A Biol Sci Med Sci 71:1395–1406PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kim EC, Kim JR (2019) Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep 52:47–55PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Yang HH, Hwangbo K, Zheng MS et al (2014) Quercetin-3-O-beta-D-glucuronide isolated from Polygonum aviculare inhibits cellular senescence in human primary cells. Arch Pharm Res 37:1219–1233PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Xu M, Tchkonia T, Ding H et al (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112:E6301–E6310PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2019

Authors and Affiliations

  1. 1.Clinical Research Fellow in Endocrinology, Wisdem CentreUniversity Hospitals Coventry & WarwickshireCoventryUK
  2. 2.Endocrinology Unit, 1st Propaedeutic Department of Internal MedicineNational and Kapodistrian University of Athens, UOA, LAIKO General HospitalAthensGreece
  3. 3.Professor Emeritus in Internal Medicine and EndocrinologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations