Skip to main content

Advertisement

Log in

Selective antagonism of CRF1 receptor by a substituted pyrimidine

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

The corticotrophin-releasing factor (CRF) and its type 1 receptor (CRF1R) regulate the hypothalamic-pituitary-adrenal axis, as well as other systems, thus playing a crucial role in the maintenance of homeostasis. Non-peptide CRF1R-selective antagonists exert therapeutic effects on experimental animals with abnormal regulation of their homeostatic mechanisms. However, none of them is as yet in clinical use. In an effort to develop novel small non-peptide CRF1R-selective antagonists, we have synthesized a series of substituted pyrimidines described in a previous study. These small molecules bind to CRF1R, with analog 3 having the highest affinity. Characteristic structural features of analog 3 are a N,N-bis(methoxyethyl)amino group at position 6 and a methyl in the alkythiol group at position 5. Based on the binding profile of analog 3, we selected it in the present study for further pharmacological characterization. The results of this study suggest that analog 3 is a potent CRF1R-selective antagonist, blocking the ability of sauvagine, a CRF-related peptide, to stimulate cAMP accumulation in HEK 293 cells via activation of CRF1R, but not via CRF2R. Moreover, analog 3 blocked sauvagine to stimulate the proliferation of macrophages, further supporting its antagonistic properties. We have also constructed molecular models of CRF1R to examine the interactions of this receptor with analog 3 and antalarmin, a prototype CRF1R-selective non-peptide antagonist, which lacks the characteristic structural features of analog 3. Our data facilitate the design of novel non-peptide CRF1R antagonists for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213(4514):1394–1397

    Article  CAS  PubMed  Google Scholar 

  2. Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43(4):425–473

    CAS  PubMed  Google Scholar 

  3. Ramot A, Jiang Z, Tian JB et al (2017) Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress. Nat Neurosci 20(3):385–388

    Article  CAS  PubMed  Google Scholar 

  4. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381

    Article  CAS  PubMed  Google Scholar 

  5. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362

    Article  CAS  PubMed  Google Scholar 

  6. Martinez V, Tache Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12(31):4071–4088

    Article  CAS  PubMed  Google Scholar 

  7. Venihaki M, Majzoub J (2002) Lessons from CRH knockout mice. Neuropeptides 36(2–3):96–102

    Article  CAS  PubMed  Google Scholar 

  8. Slominski AT, Zmijewski MA, Zbytek B et al (2013) Key role of CRF in the skin stress response system. Endocr Rev 34(6):827–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dermitzaki E, Liapakis G, Androulidaki A et al (2014) Corticotrophin-releasing factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLoS One 9(5):e97060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karalis K, Sano H, Redwine J et al (1991) Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254(5030):421–423

    Article  CAS  PubMed  Google Scholar 

  11. Henckens MJ, Deussing JM, Chen A (2016) Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 17(10):636–651

    Article  CAS  PubMed  Google Scholar 

  12. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12

    Article  CAS  PubMed  Google Scholar 

  13. Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2(1):23–33

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen DM (2006) Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci 78(9):909–919

    Article  CAS  PubMed  Google Scholar 

  15. Rivier JE, Rivier CL (2014) Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance. Front Neuroendocrinol 35(2):161–170

    Article  CAS  PubMed  Google Scholar 

  16. Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13(10):436–444

    Article  CAS  PubMed  Google Scholar 

  17. Shaham Y, de Wit H (2016) Lost in translation: CRF1 receptor antagonists and addiction treatment. Neuropsychopharmacology 41(12):2795–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spierling SR, Zorrilla EP (2017) Don't stress about CRF: assessing the translational failures of CRF1antagonists. Psychopharmacology 234(9–10):1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller MB, Zimmermann S, Sillaber I et al (2003) Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6(10):1100–1107

    Article  CAS  PubMed  Google Scholar 

  20. Timpl P, Spanagel R, Sillaber I et al (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19(2):162–166

    Article  CAS  PubMed  Google Scholar 

  21. Zorrilla EP, Koob GF (2010) Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today 15(9–10):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fahmy H, Spyridaki K, Kuppast B, Liapakis G (2012) The "homeostasis hormone" and its CRF(1) receptor. From structure to function. Hormones (Athens) 11(3):254–271

    Article  Google Scholar 

  23. Stengel A, Goebel M, Million M et al (2009) Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting. Endocrinology 150(1):153–160

    Article  CAS  PubMed  Google Scholar 

  24. Liapakis G, Venihaki M, Margioris A, Grigoriadis D, Gkountelias K (2011) Members of CRF family and their receptors: from past to future. Curr Med Chem 18(17):2583–2600

    Article  CAS  PubMed  Google Scholar 

  25. Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27(3):260–286

    Article  CAS  PubMed  Google Scholar 

  26. Gkountelias K, Papadokostaki M, Javitch JA, Liapakis G (2010) Exploring the binding site crevice of a family B G protein-coupled receptor, the type 1 corticotropin releasing factor receptor. Mol Pharmacol 78(4):785–793

    Article  CAS  PubMed  Google Scholar 

  27. Grace CR, Perrin MH, DiGruccio MR et al (2004) NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A 101(35):12836–12841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pioszak AA, Parker NR, Suino-Powell K, Xu HE (2008) Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283(47):32900–32912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoare SR, Sullivan SK, Ling N, Crowe PD, Grigoriadis DE (2003) Mechanism of corticotropin-releasing factor type I receptor regulation by nonpeptide antagonists. Mol Pharmacol 63(3):751–765

    Article  CAS  PubMed  Google Scholar 

  30. Kuppast B, Spyridaki K, Liapakis G, Fahmy H (2014) Synthesis of substituted pyrimidines as corticotropin releasing factor (CRF) receptor ligands. Eur J Med Chem 78:1–9

    Article  CAS  PubMed  Google Scholar 

  31. Venihaki M, Gravanis A, Margioris AN (1996) Kappa opioids exert a strong antiproliferative effect on PC12 rat pheochromocytoma cells. Peptides 17(3):413–419

    Article  CAS  PubMed  Google Scholar 

  32. Hollenstein K, Kean J, Bortolato A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443

    Article  CAS  PubMed  Google Scholar 

  33. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci U S A 110(13):5211–5216

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spyridaki K, Matsoukas MT, Cordomi A et al (2014) Structural-functional analysis of the third transmembrane domain of the Corticotropin-releasing factor type 1 receptor: Role in activation and allosteric antagonism. J Biol Chem 289(27):18966–18977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cordomi A, Liapakis G, Matsoukas MT (2017) Understanding Corticotropin releasing factor receptor (CRFR) activation using structural models. Curr Mol Pharmacol 10(4):325–333

    Article  CAS  PubMed  Google Scholar 

  37. McGillis JP, Park A, Rubin-Fletter P et al (1989) Stimulation of rat B-lymphocyte proliferation by corticotropin- releasing factor. J.Neurosci.Res. 23(3):346–352

    Article  CAS  PubMed  Google Scholar 

  38. Singh VK (1989) Stimulatory effect of corticotropin-releasing neurohormone on human lymphocyte proliferation and interleukin-2 receptor expression. J Neuroimmunol 23:257–262

    Article  CAS  PubMed  Google Scholar 

  39. Jessop DS, Harbuz MS, Snelson CL, Dayan CM, Lightman SL (1997) An antisense oligodeoxynucleotide complementary to corticotropin- releasing hormone mRNA inhibits rat splenocyte proliferation in vitro. J.Neuroimmunol. 75(1–2):135–140

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Liapakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Grants or fellowship supports

This work was supported by ELKE grant K.A. 4373 (George Liapakis) and ELKE grant K.A. 3330 (Andrew Margioris).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakellaris, S., Matsoukas, MT., Karageorgos, V. et al. Selective antagonism of CRF1 receptor by a substituted pyrimidine. Hormones 18, 215–221 (2019). https://doi.org/10.1007/s42000-019-00105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-019-00105-9

Keywords

Navigation