From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?

Abstract

Study of the interactions between the gut microbiota and brain-gut axis represents a very appealing approach to increasing our knowledge about the mechanisms leading to obesity and obesity-related diseases. The aim of this review is to focus on the effects of short-chain fatty acids (SCFAs), which are the main products of gut microbial fermentation from non-digestible carbohydrates in the colon, on the gut-brain axis. Evidence is accumulating regarding the role of SCFAs in the fine-tuning of the gut-brain axis, a feedback system which is vital not only for the proper maintenance of gastrointestinal and metabolic functions, but also for the regulation of food intake and energy expenditure. SCFAs are thought to play a key role in increasing the host capacity to harvest excess energy from the diet. SCFAs, however, can exert their effects on the host metabolism via multiple complementary pathways. Metabolic, inflammatory, and neural pathways can be regulated by SCFAs, which can act by sensing nutritional status, thereby maintaining body energy homeostasis. SCFA production from prebiotic consumption is the rationale for targeting intestinal mechanisms to increase energy expenditure and thereby reduce obesity risk.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Patterson E, Ryan PM, Cryan JF et al (2016) Gut microbiota, obesity and diabetes. Postgrad Med J 92:286–300

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  Google Scholar 

  5. 5.

    Muscogiuri G, Balercia G, Barrea L et al (2018) Gut: a key player in the pathogenesis of type 2 diabetes? Crit Rev Food Sci Nutr 58:1294–1309

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bohan R, Tianyu X, Tiantian Z et al (2018) Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. J Nutr Biochem 64:206–217

    Article  PubMed  Google Scholar 

  7. 7.

    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Wolever TM, Brighenti F, Royall D et al (1989) Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterol 84:1027–1033

    CAS  PubMed  Google Scholar 

  9. 9.

    Rios-Covian D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cani PD, Knauf C (2016) How gut microbes talk to organs: the role of endocrine and nervous routes. Mol Metab 5:743–752

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kasubuchi M, Hasegawa S, Hiramatsu T et al (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7:2839–2849

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Inoue D, Kimura I, Wakabayashi M et al (2012) Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett 586:1547–1554

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    Article  PubMed  Google Scholar 

  17. 17.

    Kimura I, Ozawa K, Inoue D et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Maslowski KM, Vieira AT, Ng A et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ge H, Li X, Weiszmann J et al (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519–4526

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ferrarese R, Ceresola ER, Preti A et al (2018) Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci 22:7588–7605

    CAS  PubMed  Google Scholar 

  21. 21.

    Ropert A, Cherbut C, Roze C et al (1996) Colonic fermentation and proximal gastric tone in humans. Gastroenterology 111:289–296

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kellow NJ, Coughlan MT, Reid CM (2014) Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 111:1147–1161

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Nohr MK, Pedersen MH, Gille A et al (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:3552–3564

    Article  PubMed  Google Scholar 

  24. 24.

    Verbeke KA, Boobis AR, Chiodini A et al (2015) Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 28:42–66

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhu X, Han Y, Du J et al (2017) Microbiota-gut-brain axis and the central nervous system. Oncotarget 8:53829–53838

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sam AH, Troke RC, Tan TM et al (2012) The role of the gut/brain axis in modulating food intake. Neuropharmacology 63:46–56

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ahlman H, Nilsson (2001) The gut as the largest endocrine organ in the body. Ann Oncol 12(Suppl 2):S63–S68

    Article  PubMed  Google Scholar 

  28. 28.

    Dahiya DK, Renuka PM et al (2017) Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol 8:563

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92:521–526

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Engelstoft MS, Park WM, Sakata I et al (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Barazzoni R (2014) Ghrelin and insulin secretion in humans: not a tale of two hormones? Diabetes 63:2213–2215

    Article  PubMed  Google Scholar 

  32. 32.

    Tolhurst G, Heffron H, Lam YS et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cani PD, Hoste S, Guiot Y et al (2007) Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr 98:32–37

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Brooks L, Viardot A, Tsakmaki A et al (2017) Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab 6:48–60

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Anastasovska J, Arora T, Sanchez Canon GJ et al (2012) Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity (Silver Spring, Md) 20:1016–1023

    CAS  Article  Google Scholar 

  36. 36.

    O'Malley D (2018) Endocrine regulation of gut function - a role for glucagon-like peptide-1 in the pathophysiology of irritable bowel syndrome. Exp Physiol

  37. 37.

    Li ZY, Zhang N, Wen S et al (2017) Decreased glucagon-like peptide-1 correlates with abdominal pain in patients with constipation-predominant irritable bowel syndrome. Clin Res Hepatol Gastroenterol 41:459–465

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Hustoft TN, Hausken T, Ystad SO et al (2017) Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol Motil 29

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luigi Barrea.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrea, L., Muscogiuri, G., Annunziata, G. et al. From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?. Hormones 18, 245–250 (2019). https://doi.org/10.1007/s42000-019-00100-0

Download citation

Keywords

  • Short-chain fatty acids (SCFAs)
  • Gut microbiota
  • Nutrition
  • Diet
  • Obesity