Money KM, Stanwood GD (2013) Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci 7:260
Article
PubMed
PubMed Central
CAS
Google Scholar
Rutter M, Moffitt TE, Caspi A (2006) Gene-environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiatry 47:226–261
Article
PubMed
Google Scholar
Taylor E, Rogers JW (2005) Practitioner review: early adversity and developmental disorders. J Child Psychol Psychiatry 46:451–467
Article
PubMed
Google Scholar
Cannon TD, van Erp TG, Rosso IM et al (2002) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59:35–41
Article
PubMed
Google Scholar
DeLong GR (1992) Autism, amnesia, hippocampus, and learning. Neurosci Biobehav Rev 16:63–70
Article
PubMed
CAS
Google Scholar
Lou HC (1996) Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 85:1266–1271
Article
PubMed
CAS
Google Scholar
de Haan M, Wyatt JS, Roth S, Vargha-Khadem F, Gadian D, Mishkin M (2006) Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci 9:350–358
Article
PubMed
Google Scholar
Ayres-de-Campos D (2017) In: Ayres-de-Campos D (ed) Obstetric emergencies: a practical guide. Springer International Publishing, Switzerland
Chapter
Google Scholar
Nelson KB, Ellenberg JH (1984) Obstetric complications as risk factors for cerebral palsy or seizure disorders. JAMA 251:1843–1848
Article
PubMed
CAS
Google Scholar
Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161:326–333
Article
PubMed
Google Scholar
Geddes JR, Lawrie SM (1995) Obstetric complications and schizophrenia: a meta-analysis. Br J Psychiatry 167:786–793
Article
PubMed
CAS
Google Scholar
Geddes JR, Verdoux H, Takei N et al (1999) Schizophrenia and complications of pregnancy and labor: an individual patient data meta-analysis. Schizophr Bull 25:413–423
Article
PubMed
CAS
Google Scholar
Verdoux H, Geddes JR, Takei N et al (1997) Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data. Am J Psychiatry 154:1220–1227
Article
PubMed
CAS
Google Scholar
Dahl A, Boerdahl P (1993) Obstetric complications as a risk factor for subsequent development of personality disorders. J Pers Dis 7:22–27
Article
Google Scholar
Latimer K, Wilson P, Kemp J et al (2012) Disruptive behaviour disorders: a systematic review of environmental antenatal and early years risk factors. Child Care Health Dev 38:611–628
Article
PubMed
CAS
Google Scholar
Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159:1080–1092
Article
PubMed
Google Scholar
Dalman C, Allebeck P, Cullberg J, Grunewald C, Koster M (1999) Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Arch Gen Psychiatry 56:234–240
Article
PubMed
CAS
Google Scholar
Done DJ, Johnstone EC, Frith CD, Golding J, Shepherd PM, Crow TJ (1991) Complications of pregnancy and delivery in relation to psychosis in adult life: data from the British perinatal mortality survey sample. BMJ 302:1576–1580
Article
PubMed
PubMed Central
CAS
Google Scholar
Rosso IM, Cannon TD, Huttunen T, Huttunen MO, Lonnqvist J, Gasperoni TL (2000) Obstetric risk factors for early-onset schizophrenia in a finnish birth cohort. Am J Psychiatry 157:801–807
Article
PubMed
CAS
Google Scholar
Buka SL, Tsuang MT, Lipsitt LP (1993) Pregnancy/delivery complications and psychiatric diagnosis. A prospective study. Arch Gen Psychiatry 50:151–156
Article
PubMed
CAS
Google Scholar
Cannon TD, Rosso IM, Hollister JM, Bearden CE, Sanchez LE, Hadley T (2000) A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr Bull 26:351–366
Article
PubMed
CAS
Google Scholar
Zammit S, Odd D, Horwood J et al (2009) Investigating whether adverse prenatal and perinatal events are associated with non-clinical psychotic symptoms at age 12 years in the alspac birth cohort. Psychol Med 39:1457–1467
Article
PubMed
CAS
Google Scholar
Hanssen M, Bak M, Bijl R, Vollebergh W, van Os J (2005) The incidence and outcome of subclinical psychotic experiences in the general population. Br J Clin Psychol 44:181–191
Article
PubMed
Google Scholar
Zammit S, Kounali D, Cannon M et al (2013) Psychotic experiences and psychotic disorders at age 18 in relation to psychotic experiences at age 12 in a longitudinal population-based cohort study. Am J Psychiatry 170:742–750
Article
PubMed
Google Scholar
Nosarti C, Reichenberg A, Murray RM et al (2012) Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 69:E1–E8
Article
PubMed
Google Scholar
Gardener H, Spiegelman D, Buka SL (2011) Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 128:344–355
Article
PubMed
PubMed Central
Google Scholar
Ben Amor L, Grizenko N, Schwartz G et al (2005) Perinatal complications in children with attention-deficit hyperactivity disorder and their unaffected siblings. J Psychiatry Neurosci 30:120–126
PubMed
PubMed Central
Google Scholar
Getahun D, Rhoads GG, Demissie K et al (2012) In utero exposure to ischemic-hypoxic conditions and attention-deficit/hyperactivity disorder. Pediatrics 131:e53–e61
Article
PubMed
Google Scholar
Seidman LJ, Valera EM, Makris N (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1263–1272
Article
PubMed
Google Scholar
Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version iii—the final common pathway. Schizophr Bull 35:549–562
Article
PubMed
PubMed Central
Google Scholar
Howes OD, Williams M, Ibrahim K et al (2013) Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136:3242–3251
Article
PubMed
PubMed Central
Google Scholar
Pagida MA, Konstantinidou AE, Tsekoura E, Mangoura D, Patsouris E, Panayotacopoulou MT (2013) Vulnerability of the mesencephalic dopaminergic neurons of the human neonate to prolonged perinatal hypoxia: an immunohistochemical study of tyrosine hydroxylase expression in autopsy material. J Neuropathol Exp Neurol 72:337–350
Article
PubMed
CAS
Google Scholar
Panayotacopoulou MT, Swaab DF (1993) Development of tyrosine hydroxylase-immunoreactive neurons in the human paraventricular and supraoptic nucleus. Brain Res Dev Brain Res 72:145–150
Article
PubMed
CAS
Google Scholar
Bjelke B, Andersson K, Ogren SO, Bolme P (1991) Asphyctic lesion: proliferation of tyrosine hydroxylase-immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine neurotransmission. Brain Res 543:1–9
Article
PubMed
CAS
Google Scholar
Brake WG, Boksa P, Gratton A (1997) Effects of perinatal anoxia on the acute locomotor response to repeated amphetamine administration in adult rats. Psychopharmacology 133:389–395
Article
PubMed
CAS
Google Scholar
Burke RE, Macaya A, DeVivo D, Kenyon N, Janec EM (1992) Neonatal hypoxic-ischemic or excitotoxic striatal injury results in a decreased adult number of substantia nigra neurons. Neuroscience 50:559–569
Article
PubMed
CAS
Google Scholar
Chen Y, Herrera-Marschitz M, Bjelke B, Blum M, Gross J, Andersson K (1997) Perinatal asphyxia-induced changes in rat brain tyrosine hydroxylase-immunoreactive cell body number: effects of nicotine treatment. Neurosci Lett 221:77–80
Article
PubMed
CAS
Google Scholar
Boksa P, El-Khodor BF (2003) Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: possible implications for schizophrenia and other disorders. Neurosci Biobehav Rev 27:91–101
Article
PubMed
CAS
Google Scholar
Pagida MA, Konstantinidou AE, Korelidou A et al (2016) The effect of perinatal hypoxic/ischemic injury on tyrosine hydroxylase expression in the locus coeruleus of the human neonate. Dev Neurosci 38:41–53
Article
PubMed
CAS
Google Scholar
Ganou V, Pagida MA, Konstantinidou AE et al (2010) Increased expression of tyrosine hydroxylase in the supraoptic nucleus of the human neonate under hypoxic conditions: a potential neuropathological marker for prolonged perinatal hypoxia. J Neuropathol Exp Neurol 69:1008–1016
Article
PubMed
CAS
Google Scholar
Pagida MA, Konstantinidou AE, Malidelis YI et al (2013) The human neurosecretory neurones under perinatal hypoxia: a quantitative immunohistochemical study of the supraoptic nucleus in autopsy material. J Neuroendocrinol 25:1255–1263
Article
PubMed
CAS
Google Scholar
Pagida MA, Konstantinidou AE, Tsekoura E, Patsouris E, Panayotacopoulou MT (2013) Immunohistochemical demonstration of urocortin 1 in edinger-westphal nucleus of the human neonate: colocalization with tyrosine hydroxylase under acute perinatal hypoxia. Neurosci Lett 554:47–52
Article
PubMed
CAS
Google Scholar
Davis JN (1976) Brain tyrosine hydroxylation: alteration of oxygen affinity in vivo by immobilization or electroshock in the rat. J Neurochem 27:211–215
Article
PubMed
CAS
Google Scholar
Feinsilver SH, Wong R, Raybin DM (1987) Adaptations of neurotransmitter synthesis to chronic hypoxia in cell culture. Biochim Biophys Acta 928:56–62
Article
PubMed
CAS
Google Scholar
Czyzyk-Krzeska MF, Beresh JE (1996) Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3′-untranslated region of the tyrosine hydroxylase mrna. J Biol Chem 271:3293–3299
Article
PubMed
CAS
Google Scholar
Paulding WR, Schnell PO, Bauer AL et al (2002) Regulation of gene expression for neurotransmitters during adaptation to hypoxia in oxygen-sensitive neuroendocrine cells. Microsc Res Tech 59:178–187
Article
PubMed
CAS
Google Scholar
Schmidt-Kastner R, van Os J, Esquivel G, Steinbusch HW, Rutten BP (2012) An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatry 17:1194–1205
Article
PubMed
CAS
Google Scholar
Fallet-Bianco C (2005) Diagnosis and dating of hypoxic-ischemic encephalopathy 20th European congress of pathology. France, Paris, pp 127–132
Google Scholar
Rorke-Adams L, Larroche J, de Vries L (2007) Fetal and neonatal brain damage. In: Gilbert-Barness E (ed) Potter’s pathology of the fetus, infant and child. Mosby- Elsevier, Philadelphia, pp 2027–2053
Google Scholar
Squier W (2004) Gray matter lesions. In: Golden J, Harding B (eds) Pathology and genetics, developmental neuropathology. ISN Neuropathology Press, Basel, pp 171–175
Google Scholar
Romanos M, Weise D, Schliesser M et al (2010) Structural abnormality of the substantia nigra in children with attention-deficit hyperactivity disorder. J Psychiatry Neurosci 35:55–58
Article
PubMed
PubMed Central
Google Scholar
Bogerts B, Hantsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969
PubMed
CAS
Google Scholar
Cacabelos R (2017) Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci 18:551–578
Article
PubMed Central
CAS
Google Scholar
Burke RE, Kent J, Kenyon N, Karanas A (1991) Unilateral hypoxic-ischemic injury in neonatal rat results in a persistent increase in the density of striatal tyrosine hydroxylase immunoperoxidase staining. Brain Res Dev Brain Res 58:171–179
Article
PubMed
CAS
Google Scholar
Mittal VA, Ellman LM, Cannon TD (2008) Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull 34:1083–1094
Article
PubMed
PubMed Central
Google Scholar
Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3:27–39
Article
PubMed
Google Scholar
Van Erp TG, Saleh PA, Rosso IM et al (2002) Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159:1514–1520
Article
PubMed
Google Scholar
Curatolo P, Paloscia C, D’Agati E, Moavero R, Pasini A (2009) The neurobiology of attention deficit/hyperactivity disorder. Eur J Paediatr Neurol 13:299–304
Article
PubMed
Google Scholar
Tripp G, Wickens JR (2009) Neurobiology of ADHD. Neuropharmacology 57:579–589
Article
PubMed
CAS
Google Scholar
Prince J (2008) Catecholamine dysfunction in attention-deficit/hyperactivity disorder: an update. J Clin Psychopharmacol 28(Suppl 2):39–45
Article
CAS
Google Scholar
Barlow BK, Cory-Slechta DA, Richfield EK, Thiruchelvam M (2007) The gestational environment and Parkinson’s disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reprod Toxicol 23:457–470
Article
PubMed
CAS
Google Scholar
Reinebrant HE, Wixey JA, Buller KM (2013) Neonatal hypoxia-ischaemia disrupts descending neural inputs to dorsal raphe nuclei. Neuroscience 248C:427–435
Article
CAS
Google Scholar
Buller KM, Wixey JA, Pathipati P et al (2008) Selective losses of brainstem catecholamine neurons after hypoxia-ischemia in the immature rat pup. Pediatr Res 63:364–369
Article
PubMed
CAS
Google Scholar
Homberg JR, Molteni R, Calabrese F, Riva MA (2014) The serotonin-BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev 43:35–47
Article
PubMed
CAS
Google Scholar
Kuppers E, Beyer C (2001) Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 12:1175–1179
Article
PubMed
CAS
Google Scholar
Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258
Article
PubMed
PubMed Central
CAS
Google Scholar
Cannon TD, Yolken R, Buka S, Torrey EF (2008) Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry 64:797–802
Article
PubMed
PubMed Central
CAS
Google Scholar
Casey BJ, Glatt CE, Tottenham N et al (2009) Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience 164:108–120
Article
PubMed
CAS
Google Scholar
Shoval G, Weizman A (2005) The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 15:319–329
Article
PubMed
CAS
Google Scholar
Husson I, Rangon CM, Lelievre V et al (2005) BDNF-induced white matter neuroprotection and stage-dependent neuronal survival following a neonatal excitotoxic challenge. Cereb Cortex 15:250–261
Article
PubMed
Google Scholar
Hennigan A, O’Callaghan RM, Kelly AM (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35:424–427
Article
PubMed
CAS
Google Scholar
Hetman M, Xia Z (2000) Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol Exp (Wars) 60:531–545
CAS
Google Scholar
Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264
Article
PubMed
CAS
Google Scholar
Cirulli F, Francia N, Berry A, Aloe L, Alleva E, Suomi SJ (2009) Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci Biobehav Rev 33:573–585
Article
PubMed
CAS
Google Scholar
Cirulli F, Berry A, Alleva E (2003) Early disruption of the mother-infant relationship: effects on brain plasticity and implications for psychopathology. Neurosci Biobehav Rev 27:73–82
Article
PubMed
CAS
Google Scholar
Rao R, Mashburn CB, Mao J, Wadhwa N, Smith GM, Desai NS (2009) Brain-derived neurotrophic factor in infants <32 weeks gestational age: correlation with antenatal factors and postnatal outcomes. Pediatr Res 65:548–552
Article
PubMed
PubMed Central
CAS
Google Scholar
Chouthai NS, Sampers J, Desai N, Smith GM (2003) Changes in neurotrophin levels in umbilical cord blood from infants with different gestational ages and clinical conditions. Pediatr Res 53:965–969
Article
PubMed
CAS
Google Scholar
Malamitsi-Puchner A, Economou E, Rigopoulou O, Boutsikou T (2004) Perinatal changes of brain-derived neurotrophic factor in pre- and full-term neonates. Early Hum Dev 76:17–22
Article
PubMed
CAS
Google Scholar
Nikolaou KE, Malamitsi-Puchner A, Boutsikou T et al (2006) The varying patterns of neurotrophin changes in the perinatal period. Ann N Y Acad Sci 1092:426–433
Article
PubMed
CAS
Google Scholar
Bernd P (2008) The role of neurotrophins during early development. Gene Expr 14:241–250
Article
PubMed
Google Scholar
Kawamura K, Kawamura N, Kumazawa Y, Kumagai J, Fujimoto T, Tanaka T (2011) Brain-derived neurotrophic factor/tyrosine kinase b signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy. Endocrinology 152:1090–1100
Article
PubMed
CAS
Google Scholar
Mayeur S, Lukaszewski MA, Breton C, Storme L, Vieau D, Lesage J (2011) Do neurotrophins regulate the feto-placental development? Med Hypotheses 76:726–728
Article
PubMed
CAS
Google Scholar
Korhonen L, Riikonen R, Nawa H, Lindholm D (1998) Brain derived neurotrophic factor is increased in cerebrospinal fluid of children suffering from asphyxia. Neurosci Lett 240:151–154
Article
PubMed
CAS
Google Scholar
Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053
Article
PubMed
CAS
Google Scholar
Eide MG, Moster D, Irgens LM, Reichborn-Kjennerud T, Stoltenberg C, Skjaerven R, Susser E, Abel K (2013) Degree of fetal growth restriction associated with schizophrenia risk in a national cohort. Psychol Med 43:2057–2066
Article
PubMed
CAS
Google Scholar
Van Lieshout RJ, Voruganti LP (2008) Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci 33:395–404
PubMed
PubMed Central
Google Scholar
Coupe B, Dutriez-Casteloot I, Breton C et al (2009) Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat. J Neuroendocrinol 21:40–48
Article
PubMed
CAS
Google Scholar
Ninomiya M, Numakawa T, Adachi N et al (2010) Cortical neurons from intrauterine growth retardation rats exhibit lower response to neurotrophin BDNF. Neurosci Lett 476:104–109
Article
PubMed
CAS
Google Scholar
Malamitsi-Puchner A, Nikolaou KE, Economou E et al (2007) Intrauterine growth restriction and circulating neurotrophin levels at term. Early Hum Dev 83:465–469
Article
PubMed
CAS
Google Scholar
Mayeur S, Silhol M, Moitrot E et al (2010) Placental BDNF/TRKB signaling system is modulated by fetal growth disturbances in rat and human. Placenta 31:785–791
Article
PubMed
CAS
Google Scholar
Briana DD, Papastavrou M, Boutsikou M, Marmarinos A, Gourgiotis D, Malamitsi-Puchner A (2017) Differential expression of cord blood neurotrophins in gestational diabetes: The impact of fetal growth abnormalities. J Matern Fetal Neonatal Med:1–6
Boersma GJ, Lee RS, Cordner ZA et al (2014) Prenatal stress decreases BDNF expression and increases methylation of BDNF exon iv in rats. Epigenetics 9:437–447
Article
PubMed
Google Scholar
Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA (2015) DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A 112:6807–6813
Article
PubMed
CAS
Google Scholar