Skip to main content

Advertisement

Log in

Physical frailty is related to oxidative stress through thiol/disulfide homeostasis parameters

  • Research Paper
  • Published:
European Geriatric Medicine Aims and scope Submit manuscript

Key summary points

AbstractSection Aim

To evaluate the relationship between frailty, and thiol/disulfide homeostasis parameters, and ischemia-modified albumin levels.

AbstractSection Findings

Native thiol, total thiol levels, and disulfide–thiol ratios were associated with physical frailty.

AbstractSection Message

Thiol/disulfide homeostasis parameters can be used to identify physical frailty. Newly developed oxidative stress parameters are required to determine frailty, as indicated by both phenotype and cumulative models.

Abstract

Aim

To evaluate relationship between frailty and oxidative stress through thiol/disulfide homeostasis parameters [Native thiol (NT), total thiol (TT), and disulfide levels (D), disulfide–native thiol (D/NT), disulfide–total thiol (D/TT), native thiol–total thiol (NT/TT) ratios, and ischemia-modified albumin levels (IMA)].

Materials and methods

In total, 139 community-dwelling older adults were included. The frailty status, defined by the FRIED frailty index (FFI) and Clinical Frailty Scale (CFS), and comprehensive geriatric assessment results compared with thiol/disulfide homeostasis parameters and ischemia-modified albumin levels.

Results

NT and TT levels were significantly lower in the frail group (respectively; p = 0.014, p = 0.020). The FFI scores were correlated with the levels of NT, TT, D/NT, D/TT, and NT/TT (respectively; r = − 0.25, r = − 0.24, r = 0.17, r = 0.17, r = − 0.17). The significant correlation could not be retained with the CFS scores. In ROC analysis, the AUC for NT was calculated as 0.639 in diagnosing frailty according to the FFI (95% CI 0.542–0.737), AUC was 0.638 for TT (95% CI 0.540–0.735), and AUC was 0.610 for NT/TT (95% CI 0.511–0.780). The AUC was calculated as 0.610 for both D/NT and D/TT in diagnosing physical frailty (95% CI 0.511–0.708).

Conclusion

Thiol/disulfide homeostasis parameters can be a potential biomarker in diagnosing physical frailty. However, further studies are needed for diagnosing frailty defined with cumulative deficit models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013) Frailty in elderly people. Lancet 381(9868):752–762. https://doi.org/10.1016/S0140-6736(12)62167-9

    Article  PubMed  Google Scholar 

  2. Kojima G (2015) Prevalence of frailty in nursing homes: a systematic review and meta-analysis. J Am Med Assoc 16(11):940–945. https://doi.org/10.1016/j.jamda.2015.06.025

    Article  Google Scholar 

  3. Collard RM, Boter H, Schoevers RA, Voshaar RCO (2012) Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc 60(8):1487–1492. https://doi.org/10.1111/j.1532-5415.2012.04054

    Article  PubMed  Google Scholar 

  4. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J et al (2001) Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):146–156. https://doi.org/10.1093/gerona/56.3.m146

    Article  Google Scholar 

  5. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I et al (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173(5):489–495. https://doi.org/10.1503/cmaj.050051

    Article  PubMed  PubMed Central  Google Scholar 

  6. Basic D, Shanley C (2015) Frailty in an older inpatient population: using the clinical frailty scale to predict patient outcomes. J Aging Health 27(4):670–685. https://doi.org/10.1177/0898264314558202

    Article  PubMed  Google Scholar 

  7. Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP (2019) Frailty: implications for clinical practice and public health. Lancet 394(10206):1365–1375. https://doi.org/10.1016/S0140-6736(19)31786-6

    Article  PubMed  Google Scholar 

  8. Kravvariti E, Ntouros PA, Vlachogiannis NI, Pappa M, Souliotis VL, Sfikakis PP (2023) Geriatric frailty is associated with oxidative stress, accumulation, and defective repair of DNA double-strand breaks independently of age and comorbidities. J Gerontol A Biol Sci Med Sci 78(4):603–610. https://doi.org/10.1093/gerona/glac214

    Article  CAS  PubMed  Google Scholar 

  9. Hussain A, Ashique S, Afzal O, Altamimi MA, Malik A, Kumar S et al (2023) A correlation between oxidative stress and diabetic retinopathy: an updated review. Exp Eye Res 236:109650. https://doi.org/10.1016/j.exer.2023.109650

    Article  CAS  PubMed  Google Scholar 

  10. Białczyk A, Wełniak A, Kamińska B, Czajkowski R (2023) Oxidative stress and potential antioxidant therapies in vitiligo: a narrative review. Mol Diagn Ther. https://doi.org/10.1007/s40291-023-00672-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baba SP, Bhatnagar A (2018) Role of thiols in oxidative stress. Curr Opin Toxicol 7:133–139. https://doi.org/10.1016/j.cotox.2018.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ulrich K, Jakob U (2019) The role of thiols in antioxidant systems. Free Radic Biol Med 140:14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erel Ö, Erdoğan S (2020) Thiol-disulfide homeostasis: an integrated approach with biochemical and clinical aspects. Turk J Med Sci 50(SI-2):1728–1738. https://doi.org/10.3906/sag-2003-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kundi H, Erel Ö, Balun A, Çiçekçioğlu H, Cetin M, Kızıltunç E et al (2015) Association of thiol/disulfide ratio with syntax score in patients with NSTEMI. Scand Cardiovasc J 49(2):95–100. https://doi.org/10.3109/14017431.2015.1013153l

    Article  CAS  PubMed  Google Scholar 

  15. Omma A, Sandikci SC, Kucuksahin O, Alisik M, Erel O (2017) Can the thiol/disulfide imbalance be a predictor of colchicine resistance in familial Mediterranean fever? J Korean Med Sci 32(10):1588–1594. https://doi.org/10.3346/jkms.2017.32.10.1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ergin M, Aydin C, Yurt EF, Cakir B, Erel O (2020) The variation of disulfides in the progression of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 128(2):77–81. https://doi.org/10.1055/s-0044-100376

    Article  CAS  PubMed  Google Scholar 

  17. Erdem SS, Yerlikaya FH, Çiçekler H, Gül M (2012) Association between ischemia-modified albumin, homocysteine, vitamin B12 and folic acid in patients with severe sepsis. Clin Chem Lab Med 50(8):1417–1421. https://doi.org/10.1515/cclm-2011-0794

    Article  CAS  PubMed  Google Scholar 

  18. Zurawska-Płaksej E, Grzebyk E, Marciniak D, Szymanska- Chabowska A, Piwowar A (2014) Oxidatively modified forms of albumin in patients with risk factors of metabolic syndrome. J Endocrinol Invest 37(9):819–827. https://doi.org/10.1007/s40618-014-0111-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soysal P, Isik AT, Carvalho AF, Fernandes BS, Solmi M, Schofield P et al (2017) Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas 99:66–72. https://doi.org/10.1016/j.maturitas.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  20. Saum KU, Dieffenbach AK, Jansen EH, Schöttker B, Holleczek B, Hauer K et al (2015) Association between oxidative stress and frailty in an elderly German population: results from the ESTHER Cohort Study. Gerontology 61(5):407–415. https://doi.org/10.1159/000380881

    Article  CAS  PubMed  Google Scholar 

  21. Wu IC, Shiesh SC, Kuo PH, Lin XZ (2009) High oxidative stress is correlated with frailty in elderly Chinese. J Am Geriatr Soc 7(9):1666–1671. https://doi.org/10.1111/j.1532-5415.2009.02392.x

    Article  Google Scholar 

  22. Liu CK, Lyass A, Larson MG, Massaro JM, Wang N, D’Agostino RB Sr et al (2016) Biomarkers of oxidative stress are associated with frailty: the Framingham Offspring Study. Age (Dordr) 38(1):1–10. https://doi.org/10.1007/s11357-015-9864-z

    Article  CAS  PubMed  Google Scholar 

  23. Serviddio G, Romano AD, Greco A, Rollo T, Bellanti F, Altomare E et al (2009) Frailty syndrome is associated with altered circulating redox balance and increased markers of oxidative stress. Int J Immunopathol Pharmacol 22(3):819–827. https://doi.org/10.1177/039463200902200328

    Article  CAS  PubMed  Google Scholar 

  24. Inglés M, Gambini J, Carnicero JA, García-García FJ, Rodríguez-Manas L, Olaso-González BG et al (2014) Oxidative stress is related to frailty, not to age or sex, in a geriatric population: lipid and protein oxidation as biomarkers of frailty. J Am Geriatr Soc 62(7):1324–1328. https://doi.org/10.1111/jgs.12876

    Article  PubMed  Google Scholar 

  25. Namioka N, Hanyu H, Hirose D, Hatanaka H, Sato T, Shimizu S (2017) Oxidative stress and inflammation are associated with physical frailty in patients with Alzheimer’s disease. Geriatr Gerontol Int 17(6):913–918. https://doi.org/10.1111/ggi.12804

    Article  PubMed  Google Scholar 

  26. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW (1963) Studies of illness in the aged: the index of adl: a standardized measure of biological and psychosocial function. JAMA 185:914–919. https://doi.org/10.1001/jama.1963.03060120024016

    Article  CAS  PubMed  Google Scholar 

  27. Arik G, Varan HD, Yavuz BB, Karabulut E, Kara O, Kilic MK et al (2015) Validation of Katz index of independence in activities of daily living in Turkish older adults. Arch Gerontol Geriatr 61(3):344–350. https://doi.org/10.1016/j.archger.2015.08.019

    Article  PubMed  Google Scholar 

  28. Lawton MP, Brody EM (1969) Assessment of older people: selfmaintaining and instrumental activities of daily living. Gerontologist 9:179–186

    Article  CAS  PubMed  Google Scholar 

  29. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  30. Güngen C, Ertan T, Eker E, Yaşar R, Engin F (2002) Standardize Mini Mental test’in türk toplumunda hafif demans tanisinda geçerlik ve güvenilirliği [Reliability and validity of the standardized Mini Mental State Examination in the diagnosis of mild dementia in Turkish population]. Turk Psikiyatri Derg 13(4):273–281

    PubMed  Google Scholar 

  31. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M et al (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1):37–49. https://doi.org/10.1016/0022-3956(82)90033-4

    Article  PubMed  Google Scholar 

  32. Ertan TBE, Eker E (2004) Geriatrik depresyon ölçeği kısa versiyonlarının Türk yaşlı toplumunda geçerlilik ve güvenirliliği: GDS-15, GDS-10, GDS-4. Ulusal Geropsikiyatri Sempozyumu

    Google Scholar 

  33. Guigoz Y, Lauque S, Vellas BJ (2002) Identifying the elderly at risk for malnutrition. The mini nutritional assessment. Clin Geriatr Med 18(4):737–757. https://doi.org/10.1016/s0749-0690(02)00059-9

    Article  PubMed  Google Scholar 

  34. Sarikaya D, Halil M, Kuyumcu ME, Kilic MK, Yesil Y, Kara O et al (2015) Mini nutritional assessment test long and short form are valid screening tools in Turkish older adults. Arch Gerontol Geriatr 61(1):56–60. https://doi.org/10.1016/j.archger.2015.04.006

    Article  PubMed  Google Scholar 

  35. Malmstrom TK, Morley JE (2013) SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Assoc 14(8):531–532. https://doi.org/10.1016/j.jamda.2013.05.018

    Article  Google Scholar 

  36. Bahat G, Yilmaz O, Kılıç C, Oren MM, Karan MA (2018) Performance of SARC-F in regard to sarcopenia definitions, muscle mass and functional measures. J Nutr Health Aging 22(8):898–903. https://doi.org/10.1007/s12603-018-1067-8

    Article  CAS  PubMed  Google Scholar 

  37. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213. https://doi.org/10.1016/0165-1781(89)90047-4

    Article  CAS  PubMed  Google Scholar 

  38. Ağargün MY, Kara H, Anlar Ö (1996) Pittsburgh Uyku Kalitesi İndeksi’nin Geçerliği ve Güvenirliği. Turk Psikiyatri Derg 7:107–115

    Google Scholar 

  39. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2018) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed Central  Google Scholar 

  40. Özsürekci C, Balcı C, Kızılarslanoğlu MC, Çalışkan H, Tuna Doğrul R, Ayçiçek GŞ et al (2020) An important problem in an aging country: identifying the frailty via 9 point clinical frailty scale. Acta Clin Belg 75(3):200–204. https://doi.org/10.1080/17843286.2019.1597457

    Article  PubMed  Google Scholar 

  41. Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47(18):326–332. https://doi.org/10.1016/j.clinbiochem.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  42. Bar-Or D, Lau E, Winkler JV (2000) A novel assay for cobalt albumin binding and itspotential as a marker for myocardial ischemia—a preliminary report. J Emerg Med 19(4):311–315. https://doi.org/10.1016/s0736-4679(00)00255-9

    Article  CAS  PubMed  Google Scholar 

  43. Mailliez A, Guilbaud A, Puisieux F, Dauchet L, Boulanger É (2020) Circulating biomarkers characterizing physical frailty: CRP, hemoglobin, albumin, 25OHD and free testosterone as best biomarkers. Results of a meta-analysis. Exp Gerontol 139:111014. https://doi.org/10.1016/j.exger.2020.111014

    Article  CAS  PubMed  Google Scholar 

  44. Sanchis J, Nunez E, Ruiz V, Bonanad C, Fernandez J, Cauli O et al (2015) Usefulness of clinical data and biomarkers for the identification of frailty after acute coronary syndromes. Can J Cardiol 31(12):1462–1468. https://doi.org/10.1016/j.cjca.2015.07.737

    Article  PubMed  Google Scholar 

  45. Travison TG, Shackelton R, Araujo AB, Morley JE, Williams RE, Clark RV et al (2010) Frailty, serum androgens, and the CAG repeat polymorphism: results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 95(6):2746–2754. https://doi.org/10.1210/jc.2009-0919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inglés M, Gambini J, Carnicero JA, García-García FJ, Rodríguez-Mañas L, Olaso-González G et al (2014) Oxidative stress is related to frailty, not to age or sex, in a geriatric population: lipid and protein oxidation as biomarkers of frailty. J Am Geriatr Soc 62(7):1324–1328. https://doi.org/10.1111/jgs.12876

    Article  PubMed  Google Scholar 

  47. Mensah E, Ali K, Banya W, Kirkham FA, Mengozzi M, Ghezzi P et al (2022) Frailty and arterial stiffness-the role of oXidative stress and Inflammation (FRAXI study). Biomark Insights 18(17):11772719221130720. https://doi.org/10.1177/11772719221130719

    Article  Google Scholar 

  48. Wu IC, Shiesh SC, Kuo PH, Lin XZ (2009) High oxidative stress is correlated with frailty in elderly chinese. J Am Geriatr Soc 57(9):1666–1671. https://doi.org/10.1111/j.1532-5415.2009.02392.x

    Article  PubMed  Google Scholar 

  49. Picca A, Coelho-Junior HJ, Calvani R, Marzetti E, Vetrano DL (2022) Biomarkers shared by frailty and sarcopenia in older adults: a systematic review and meta-analysis. Ageing Res Rev 73:101530. https://doi.org/10.1016/j.arr.2021.101530

    Article  CAS  PubMed  Google Scholar 

  50. Dirican N, Dirican A, Sen O, Aynali A, Atalay S, Bircan HA et al (2016) Thiol/disulfide homeostasis: a prognostic biomarker for patients with advanced non-small cell lung cancer? Redox Rep 21(5):197–203. https://doi.org/10.1179/1351000215Y.0000000027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gumusyayla S, Vural G, Bektas H, Deniz O, Neselioglu S, Erel O (2016) A novel oxidative stress marker in patients with Alzheimer’s disease: dynamic thiol-disulphide homeostasis. Acta Neuropsychiatr 28(6):315–320. https://doi.org/10.1017/neu.2016.13

    Article  PubMed  Google Scholar 

  52. Eren MA, Koyuncu İ, İncebıyık H, Karakaş H, Erel Ö, Sabuncu T (2019) The evaluation of thiol/disulphide homeostasis in diabetic nephropathy. Diabetes Res Clin Pract 148:249–253. https://doi.org/10.1016/j.diabres.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  53. Tanrıverdi F, Yıldırım Ç, Şener A, Erel Ö (2022) Are thiol–disulfide homeostasis & neutrophil-to-lymphocyte ratio useful in the differential diagnosis of acute familial Mediterranean fever attacks and acute appendicitis? Indian J Med Res 155(2):280–285. https://doi.org/10.4103/ijmr.IJMR_1610_19

    Article  PubMed  PubMed Central  Google Scholar 

  54. Altıparmak IH, Erkuş ME, Sezen H, Demirbag R, Gunebakmaz O, Kaya Z et al (2016) The relation of serum thiol levels and thiol/disulphide homeostasis with the severity of coronary artery disease. Kardiol Pol 74(11):1346–1353. https://doi.org/10.5603/KP.a2016.0085

    Article  PubMed  Google Scholar 

  55. ErginTuncay M, Atagun MI, Erel O (2023) Thiol disulfide homeostasis in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 123:110719. https://doi.org/10.1016/j.pnpbp.2023.110719

    Article  CAS  Google Scholar 

  56. Küçükdiler AHE, Varlı M, Yavuz Ö, Yalçın A, SelviÖztorun H, Devrim E et al (2019) Evaluation of oxidative stress parameters and antioxidant status in plasma and erythrocytes of elderly diabetic patients with sarcopenia. J Nutr Health Aging 23(3):239–245. https://doi.org/10.1007/s12603-018-1137-y

    Article  CAS  PubMed  Google Scholar 

  57. Can B, Kara O, Kizilarslanoglu MC, Arik G, Aycicek GS et al (2017) Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin Exp Res 29(4):745–752. https://doi.org/10.1007/s40520-016-0626-2

    Article  PubMed  Google Scholar 

  58. Özsürekci C, ŞengülAyçiçek G, Çalışkan H, Tuna Doğrul R, Neşelioğlu S, Özcan M et al (2021) Thiol-disulfide homeostasis and ischemia-modified albumin as a marker of oxidative stress in patients with sarcopenia. Geriatr Gerontol Int 21(7):584–589. https://doi.org/10.1111/ggi.14199

    Article  PubMed  Google Scholar 

  59. AytacAtes H, Yücetaş U, Erkan E, Yucetas E, Ulusoy S, Kadihasanoglu M et al (2019) The predictive value of ischemia-modified albumin in renal ischemia-reperfusion injury. Urol Int 103(4):473–481. https://doi.org/10.1159/000500929

    Article  CAS  Google Scholar 

  60. Chawla R, Loomba R, Guru D, Loomba V (2016) Ischemia modified albümin (IMA): a marker of Glycaemic control and vascular complications in type 2 diabetes mellitus. J Clin Diagn Res 10(3):13–16. https://doi.org/10.7860/JCDR/2016/15282.7432

    Article  CAS  Google Scholar 

  61. Mehmetoğlu I, Kurban S, Yerlikaya FH, Polat H (2012) Obesity is an independent determinant of ischemia-modified albumin. Obes Facts 5(5):700–709. https://doi.org/10.1159/000343954

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any funding from agencies in the public, commercial, or not-for-profit sectors. Sponsor’s role: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Hafızoğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study's ethics approval has taken from the Ankara Hacettepe University Department of Medicine clinical research ethics committee, and the decision number is 2023/12–20 (GO 23/606). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafızoğlu, M., Eren, F., Neşelioğlu, S. et al. Physical frailty is related to oxidative stress through thiol/disulfide homeostasis parameters. Eur Geriatr Med 15, 423–434 (2024). https://doi.org/10.1007/s41999-023-00911-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41999-023-00911-w

Keywords

Navigation