Sarcopenic osteoarthritis: a new entity in geriatric medicine?

  • Nicola Veronese
  • Leonardo Punzi
  • Cornel Sieber
  • Jurgen Bauer
  • Jean-Yves Reginster
  • Stefania Maggi
  • On behalf of the Task Finish Group on “Arthritis” of the European Geriatric Medicine Society
Review
  • 1 Downloads

Abstract

Purpose

Osteoarthritis, a disease characterized by cartilage degradation, abnormal subchondral bone remodeling and some grade of inflammation, and sarcopenia, a condition of low muscle mass associated with reduced strength and function, are prevalent disorders in older adults. In this review, we examine what is known about the relationship between osteoarthritis and sarcopenia, with particular focus on the older population. We also discuss how osteoarthritis and sarcopenia may interact and affect each other in clinical progression and the potential benefits from developing treatments that address such muscular-skeletal interaction.

Methods

We searched in Pubmed and Scopus through a combination of search and MESH terms, for osteoarthritis and sarcopenia.

Results

Even if more literature is needed, there is increasing evidence that decline in lower limb muscle strength is associated with knee or hip osteoarthritis in a pathological network of pain, altered joint stability, maladapted postures and defective neuromuscular communication. At the cellular levels, chondrocytes and myoblasts share common pathways, and the close anatomical location of both cell types also suggest the possibility of paracrine communication.

Conclusions

Sarcopenia and osteoarthritis are significantly intercorrelated and in the near future should be considered as an only entity, as we have recently proposed for sarcopenia and osteoporosis. The treatment of both sarcopenia and osteoarthritis is based on physical exercise and nutritional interventions with the aim of improving cartilage, bone and muscle health. Future studies are needed, particularly to know the exact prevalence of sarcopenia in people with osteoarthritis, its peculiar consequences and the most appropriate treatments.

Keywords

Sarcopenia Osteoarthritis Physical performance Therapy 

Notes

Acknowledgements

We sincerely thank prof. Luigi Ferrucci, National Istitutes of Aging, Baltimore, MD, USA for his careful revision of this manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors have any financial arrangements, organizational affiliations or other relationships that might give rise to any conflict of interest regarding the subject matter of the manuscript submitted.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423.  https://doi.org/10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A et al (2017) Sarcopenia: an overview. Aging Clin Exp Res 29(1):11–17.  https://doi.org/10.1007/s40520-016-0704-5 CrossRefPubMedGoogle Scholar
  3. 3.
    Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R et al (2017) Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 29(1):19–27.  https://doi.org/10.1007/s40520-016-0717-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Bernabei R, Mariotti L, Bordes P, Roubenoff R (2017) The, “sarcopenia and physical frailty in older people: multi-component treatment strategies” (SPRINTT) project: advancing the care of physically frail and sarcopenic older people. Aging Clin Exp Res 29(1):1–2.  https://doi.org/10.1007/s40520-016-0707-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R (2017) Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord 16:21.  https://doi.org/10.1186/s40200-017-0302-x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morley JE, Anker SD, von Haehling S (2014) Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update 2014. J Cachexia 5(4):253–259.  https://doi.org/10.1007/s13539-014-0161-y Google Scholar
  7. 7.
    Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12(6):403–409.  https://doi.org/10.1016/j.jamda.2011.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bano G, Trevisan C, Carraro S, Solmi M, Luchini C, Stubbs B et al (2017) Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96:10–15.  https://doi.org/10.1016/j.maturitas.2016.11.006 CrossRefPubMedGoogle Scholar
  9. 9.
    Byeon CH, Kang KY, Kang SH, Kim HK, Bae EJ (2016) Sarcopenia is not associated with depression in Korean adults: results from the 2010–2011 Korean National Health and Nutrition Examination Survey. Korean J Fam Med 37(1):37–43.  https://doi.org/10.4082/kjfm.2016.37.1.37 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thomas DR (2007) Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin Nutr 26(4):389–399.  https://doi.org/10.1016/j.clnu.2007.03.008 CrossRefPubMedGoogle Scholar
  11. 11.
    Chang KV, Hsu TH, Wu WT, Huang KC, Han DS (2017) Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing 46(5):738–746.  https://doi.org/10.1093/ageing/afx094 CrossRefPubMedGoogle Scholar
  12. 12.
    Campins L, Camps M, Riera A, Pleguezuelos E, Yebenes JC, Serra-Prat M (2017) Oral drugs related with muscle wasting and sarcopenia. A Review. Pharmacology 99(1–2):1–8.  https://doi.org/10.1159/000448247 CrossRefPubMedGoogle Scholar
  13. 13.
    Sirven N, Rapp T, Coretti S, Ruggeri M, Cicchetti A (2017) Preventing mobility disability in Europe: a health economics perspective from the SPRINTT study. Aging Clin Exp Res 29(1):75–79.  https://doi.org/10.1007/s40520-016-0713-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Cederholm T, Cruz-Jentoft AJ, Maggi S (2013) Sarcopenia and fragility fractures. Eur J Phys Rehabil Med 49(1):111–117PubMedGoogle Scholar
  15. 15.
    Bianchi L, Ferrucci L, Cherubini A, Maggio M, Bandinelli S, Savino E et al (2015) The predictive value of the EWGSOP definition of sarcopenia: results from the InCHIANTI study. J Gerontol Series A.  https://doi.org/10.1093/gerona/glv129 Google Scholar
  16. 16.
    Rizzoli R, Reginster JY, Arnal JF, Bautmans I, Beaudart C, Bischoff-Ferrari H et al (2013) Quality of life in sarcopenia and frailty. Calcif Tissue Int 93(2):101–120.  https://doi.org/10.1007/s00223-013-9758-y CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kinds MB, Welsing PMJ, Vignon EP, Bijlsma JWJ, Viergever MA, Marijnissen ACA et al (2011) A systematic review of the association between radiographic and clinical osteoarthritis of hip and knee. Osteoarthr Cartil 19(7):768–778.  https://doi.org/10.1016/j.joca.2011.01.015 CrossRefPubMedGoogle Scholar
  18. 18.
    Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105(1):185–199.  https://doi.org/10.1093/bmb/lds038 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Castell MV, van der Pas S, Otero A, Siviero P, Dennison E, Denkinger M et al (2015) Osteoarthritis and frailty in elderly individuals across six European countries: results from the European Project on OSteoArthritis (EPOSA). BMC Musculoskelet Disord 16:359.  https://doi.org/10.1186/s12891-015-0807-8 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schaap LA, Peeters GMEE, Dennison EM, Zambon S, Nikolaus T, Sanchez-Martinez M et al (2011) European Project on Osteoarthritis (EPOSA): methodological challenges in harmonization of existing data from five European population-based cohorts on aging. BMC Musculoskelet Disord 12:272.  https://doi.org/10.1186/1471-2474-12-272 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Veronese N, Stubbs B, Noale M, Solmi M, Luchini C, Smith TO et al (2016) Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: data from the osteoarthritis initiative. Clin Nutr (Edinb, Scotl).  https://doi.org/10.1016/j.clnu.2016.09.035 Google Scholar
  22. 22.
    Jordan J, Luta G, Renner J, Dragomir A, Hochberg M, Fryer J (1997) Knee pain and knee osteoarthritis severity in self-reported task specific disability: the Johnston County Osteoarthritis Project. J Rheumatol 24(7):1344–1349PubMedGoogle Scholar
  23. 23.
    Veronese N, Cereda E, Maggi S, Luchini C, Solmi M, Smith T et al (2016) Osteoarthritis and mortality: a prospective cohort study and systematic review with meta-analysis. Semin Arthr Rheum 46(2):160–167.  https://doi.org/10.1016/j.semarthrit.2016.04.002 CrossRefGoogle Scholar
  24. 24.
    Veronese N, Trevisan C, De Rui M, Bolzetta F, Maggi S, Zambon S et al (2016) Association of osteoarthritis with increased risk of cardiovascular diseases in the elderly: findings from the progetto veneto anziano study cohort. Arthr Rheumatol (Hoboken, NJ) 68(5):1136–1144.  https://doi.org/10.1002/art.39564 Google Scholar
  25. 25.
    Veronese N, Stubbs B, Solmi M, Smith TO, Reginster JY, Maggi S (2017) Osteoarthritis increases the risk of cardiovascular disease: data from the osteoarthritis initiative. J Nutr.  https://doi.org/10.1007/s12603-017-0941-0 Google Scholar
  26. 26.
    Veronese N, Stubbs B, Solmi M, Smith T, Noale M, Schofield P et al (2017) Knee osteoarthritis and risk of hypertension: a longitudinal cohort study. Rejuvenation Res.  https://doi.org/10.1089/rej.2017.1917 PubMedCentralGoogle Scholar
  27. 27.
    Veronese N, Stubbs B, Solmi M, Smith TO, Noale M, Cooper C et al (2016) Association between lower limb osteoarthritis and incidence of depressive symptoms: data from the osteoarthritis initiative. Age Ageing.  https://doi.org/10.1093/ageing/afw216 Google Scholar
  28. 28.
    Stubbs B, Aluko Y, Myint PK, Smith TO (2016) Prevalence of depressive symptoms and anxiety in osteoarthritis: a systematic review and meta-analysis. Age Ageing.  https://doi.org/10.1093/ageing/afw001 PubMedGoogle Scholar
  29. 29.
    Huang SW, Wang WT, Chou LC, Liao CD, Liou TH, Lin HW (2015) Osteoarthritis increases the risk of dementia: a nationwide cohort study in Taiwan. Scientific Rep 5:10145.  https://doi.org/10.1038/srep10145 CrossRefGoogle Scholar
  30. 30.
    Veronese N, Stubbs B, Noale M, Solmi M, Luchini C, Maggi S (2016) Adherence to the Mediterranean diet is associated with better quality of life: data from the osteoarthritis initiative. Am J Clin Nutr 104(5):1403–1409.  https://doi.org/10.3945/ajcn.116.136390 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Beaudart C, Biver E, Bruyere O, Cooper C, Al-Daghri N, Reginster JY et al (2017) Quality of life assessment in musculo-skeletal health. Aging Clin Exp Res.  https://doi.org/10.1007/s40520-017-0794-8 PubMedCentralGoogle Scholar
  32. 32.
    Reginster JY, Beaudart C, Buckinx F, Bruyere O (2016) Osteoporosis and sarcopenia: two diseases or one? Curr Opin Clin Nutr Metabol Care 19(1):31–36.  https://doi.org/10.1097/mco.0000000000000230 CrossRefGoogle Scholar
  33. 33.
    Edwards MH, van der Pas S, Denkinger MD, Parsons C, Jameson KA, Schaap L et al (2014) Relationships between physical performance and knee and hip osteoarthritis: findings from the European Project on Osteoarthritis (EPOSA). Age Ageing 43(6):806–813.  https://doi.org/10.1093/ageing/afu068 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sharma L, Dunlop DD, Cahue S, Song J, Hayes KW (2003) Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Ann Intern Med 138(8):613–619CrossRefPubMedGoogle Scholar
  35. 35.
    Chaisson CE, Zhang Y, Sharma L, Kannel W, Felson DT (1999) Grip strength and the risk of developing radiographic hand osteoarthritis: results from the Framingham Study. Arthr Rheum 42(1):33–38. doi: 10.1002/1529-0131(199901)42:1<33::AID-ANR4>3.0.CO;2-IGoogle Scholar
  36. 36.
    Kemmler W, Teschler M, Goisser S, Bebenek M, von Stengel S, Bollheimer LC et al (2015) Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interven Aging 10:1565–1573.  https://doi.org/10.2147/cia.s89585 CrossRefGoogle Scholar
  37. 37.
    Wang Y, Wluka AE, Berry PA, Siew T, Teichtahl AJ, Urquhart DM et al (2012) Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis. Arthr Rheum 64(12):3917–3925.  https://doi.org/10.1002/art.34681 CrossRefGoogle Scholar
  38. 38.
    De Ceuninck F, Fradin A, Pastoureau P (2014) Bearing arms against osteoarthritis and sarcopenia: when cartilage and skeletal muscle find common interest in talking together. Drug Discov Today 19(3):305–311.  https://doi.org/10.1016/j.drudis.2013.08.004 CrossRefPubMedGoogle Scholar
  39. 39.
    Miller ME, Rejeski WJ, Messier SP, Loeser RF (2001) Modifiers of change in physical functioning in older adults with knee pain: the Observational Arthritis Study in Seniors (OASIS). Arthr Rheum 45(4):331–339. doi: 10.1002/1529-0131(200108)45:4<331::AID-ART345>3.0.CO;2-6CrossRefGoogle Scholar
  40. 40.
    Scott D, Blizzard L, Fell J, Jones G (2012) Prospective study of self-reported pain, radiographic osteoarthritis, sarcopenia progression, and falls risk in community-dwelling older adults. Arthr Care Res 64(1):30–37CrossRefGoogle Scholar
  41. 41.
    Isaacson J, Brotto M (2014) Physiology of mechanotransduction: how do muscle and bone “talk” to one another? Clin Rev Bone Miner Metabol 12(2):77–85.  https://doi.org/10.1007/s12018-013-9152-3 CrossRefGoogle Scholar
  42. 42.
    Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V (2015) Muscle and bone, two interconnected tissues. Ageing Res Rev 21:55–70.  https://doi.org/10.1016/j.arr.2015.03.002 CrossRefPubMedGoogle Scholar
  43. 43.
    Tie K, Zhang X, Tan Y, Deng Y, Li J, Ni Q et al (2016) Intrauterine low-functional programming of IGF1 by prenatal nicotine exposure mediates the susceptibility to osteoarthritis in female adult rat offspring. FASEB J 30(2):785–797.  https://doi.org/10.1096/fj.15-274399 CrossRefPubMedGoogle Scholar
  44. 44.
    Sassi N, Laadhar L, Allouche M, Achek A, Kallel-Sellami M, Makni S et al (2014) WNT signaling and chondrocytes: from cell fate determination to osteoarthritis physiopathology. J Recept Signal Transduc Res 34(2):73–80.  https://doi.org/10.3109/10799893.2013.863919 CrossRefGoogle Scholar
  45. 45.
    Roman-Blas JA, Herrero-Beaumont G (2014) Targeting subchondral bone in osteoporotic osteoarthritis. Arthr Res Ther 16(6):494.  https://doi.org/10.1186/s13075-014-0494-0 CrossRefGoogle Scholar
  46. 46.
    Cairns DM, Lee PG, Uchimura T, Seufert CR, Kwon H, Zeng L (2010) The role of muscle cells in regulating cartilage matrix production. J Orthop Res 28(4):529–536.  https://doi.org/10.1002/jor.21014 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Andriamanalijaona R, Duval E, Raoudi M, Lecourt S, Vilquin JT, Marolleau JP et al (2008) Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthr Cartil 16(12):1509–1518.  https://doi.org/10.1016/j.joca.2008.04.018 CrossRefPubMedGoogle Scholar
  48. 48.
    Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity - definition, etiology and consequences. Curr Opin Clin Nutr Metabol Care 11(6):693–700.  https://doi.org/10.1097/MCO.0b013e328312c37d CrossRefGoogle Scholar
  49. 49.
    Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Series A 69(Suppl 1):S4–S9.  https://doi.org/10.1093/gerona/glu057 CrossRefGoogle Scholar
  50. 50.
    Ilich JZ, Kelly OJ, Inglis JE (2016) Osteosarcopenic obesity syndrome: what is it and how can it be identified and diagnosed? Curr Gerontol Geriatr Res 2016:7325973.  https://doi.org/10.1155/2016/7325973 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lee S, Kim TN, Kim SH (2012) Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: a cross-sectional study. Arthr Rheum 64(12):3947–3954.  https://doi.org/10.1002/art.37696 CrossRefGoogle Scholar
  52. 52.
    Vlietstra L, Meredith-Jones K, Stebbings S, Abbott JH, Treharne GJ, Waters DL (2017) Sarcopenic obesity is more prevalent in osteoarthritis than rheumatoid arthritis: are different processes involved? Rheumatol (Oxf, Engl) 56(10):1816–1818.  https://doi.org/10.1093/rheumatology/kex303 CrossRefGoogle Scholar
  53. 53.
    Curtis GL, Chughtai M, Khlopas A, Newman JM, Khan R, Shaffiy S et al (2017) Impact of physical activity in cardiovascular and musculoskeletal health: can motion be medicine? J Clin Med Res 9(5):375–381.  https://doi.org/10.14740/jocmr3001w CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A et al (2017) Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res 29(1):35–42.  https://doi.org/10.1007/s40520-016-0705-4 CrossRefPubMedGoogle Scholar
  55. 55.
    Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N et al (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int.  https://doi.org/10.1007/s00198-017-3980-9 PubMedPubMedCentralGoogle Scholar
  56. 56.
    Landi F, Cesari M, Calvani R, Cherubini A, Di Bari M, Bejuit R et al (2017) The “sarcopenia and physical frailty in older people: multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: design and methods. Aging Clin Exp Res 29(1):89–100.  https://doi.org/10.1007/s40520-016-0715-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Bartels EM, Juhl CB, Christensen R, Hagen KB, Danneskiold-Samsoe B, Dagfinrud H et al (2016) Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst Rev 3:CD005523.  https://doi.org/10.1002/14651858.CD005523.pub3 PubMedGoogle Scholar
  58. 58.
    Brosseau L, Taki J, Desjardins B, Thevenot O, Fransen M, Wells GA et al (2017) The Ottawa panel clinical practice guidelines for the management of knee osteoarthritis. Part three: aerobic exercise programs. Clin Rehabil 31(5):612–624.  https://doi.org/10.1177/0269215517691085 CrossRefPubMedGoogle Scholar
  59. 59.
    Minshull C, Gleeson N (2017) Considerations of the principles of resistance training in exercise studies for the management of knee osteoarthritis: a systematic review. Arch Phys Med Rehabil.  https://doi.org/10.1016/j.apmr.2017.02.026 PubMedGoogle Scholar
  60. 60.
    Osteras N, Kjeken I, Smedslund G, Moe RH, Slatkowsky-Christensen B, Uhlig T et al (2017) Exercise for hand osteoarthritis. Cochrane Database Syst Rev 1:CD010388.  https://doi.org/10.1002/14651858.CD010388.pub2 PubMedGoogle Scholar
  61. 61.
    Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC (2017) Nutrition, frailty, and sarcopenia. Aging Clin Exp Res 29(1):43–48.  https://doi.org/10.1007/s40520-016-0709-0 CrossRefPubMedGoogle Scholar
  62. 62.
    Bliddal H, Leeds AR, Christensen R (2014) Osteoarthritis, obesity and weight loss: evidence, hypotheses and horizons – a scoping review. Obes Rev 15(7):578–586.  https://doi.org/10.1111/obr.12173 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dyer J, Davison G, Marcora SM, Mauger AR (2017) Effect of a Mediterranean type diet on inflammatory and cartilage degradation biomarkers in patients with osteoarthritis. J Nutr 21(5):562–566.  https://doi.org/10.1007/s12603-016-0806-y Google Scholar
  64. 64.
    Hashemi R, Motlagh AD, Heshmat R, Esmaillzadeh A, Payab M, Yousefinia M et al (2016) Diet and its relationship to sarcopenia in community dwelling Iranian elderly: a cross sectional study. Nutrition 31(1):97–104.  https://doi.org/10.1016/j.nut.2014.05.003 CrossRefGoogle Scholar
  65. 65.
    Wang Y, Hao Q, Dong B (2017) adherence to the mediterranean diet and risk of sarcopenia in chinese community older people. Innov Aging 1:1132.  https://doi.org/10.1093/geroni/igx004.4138 CrossRefGoogle Scholar
  66. 66.
    Shahar DR, Houston DK, Hue TF, Lee J-S, Sahyoun NR, Tylavsky FA et al (2012) Adherence to Mediterranean diet and decline in walking speed over 8 years in community-dwelling older adults. J Am Geriatr Soc 60(10):1881–1888.  https://doi.org/10.1111/j.1532-5415.2012.04167.x CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Smith A (2014) Sarcopenia, malnutrition and nutrient density in older people. Post Reproduct Health 20(1):19–21.  https://doi.org/10.1177/1754045314521552 CrossRefGoogle Scholar
  68. 68.
    Rizzoli R, Boonen S, Brandi ML, Bruyere O, Cooper C, Kanis JA et al (2013) Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin 29(4):305–313.  https://doi.org/10.1185/03007995.2013.766162 CrossRefPubMedGoogle Scholar
  69. 69.
    Cianferotti L, Cricelli C, Kanis JA, Nuti R, Reginster JY, Ringe JD et al (2015) The clinical use of vitamin D metabolites and their potential developments: a position statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF). Endocrine 50(1):12–26.  https://doi.org/10.1007/s12020-015-0606-x CrossRefPubMedGoogle Scholar
  70. 70.
    Veronese N, Maggi S, Noale M, De Rui M, Bolzetta F, Zambon S et al (2015) Serum 25-hydroxyvitamin D and osteoarthritis in older people: the progetto veneto anziani study. Rejuvenation Res.  https://doi.org/10.1089/rej.2015.1671 PubMedGoogle Scholar
  71. 71.
    Sanders KM, Scott D, Ebeling PR (2014) Vitamin D deficiency and its role in muscle-bone interactions in the elderly. Curr Osteoporos Rep 12(1):74–81.  https://doi.org/10.1007/s11914-014-0193-4 CrossRefPubMedGoogle Scholar
  72. 72.
    Arik G, Ulger Z (2016) Vitamin D in sarcopenia: understanding its role in pathogenesis, prevention and treatment. Eur Geriatr Med 7(3):207–213.  https://doi.org/10.1016/j.eurger.2015.12.001 CrossRefGoogle Scholar
  73. 73.
    Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M et al (2015) Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 16(9):740–747.  https://doi.org/10.1016/j.jamda.2015.05.021 CrossRefPubMedGoogle Scholar
  74. 74.
    Bergink AP, Zillikens MC, Van Leeuwen JP, Hofman A, Uitterlinden AG, van Meurs JB (2016) 25-Hydroxyvitamin D and osteoarthritis: a meta-analysis including new data. Semin Arthr Rheum 45(5):539–546.  https://doi.org/10.1016/j.semarthrit.2015.09.010 CrossRefGoogle Scholar
  75. 75.
    McAlindon T, LaValley M, Schneider E et al (2013) Effect of vitamin d supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA 309(2):155–162.  https://doi.org/10.1001/jama.2012.164487 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Veronese N, Bolzetta F, De Rui M, Zambon S, Corti MC, Musacchio E et al (2014) Serum 25-hydroxyvitamin D and orthostatic hypotension in old people: the Pro.V.A. study. Hypertension 64(3):481–486.  https://doi.org/10.1161/hypertensionaha.114.03143 CrossRefPubMedGoogle Scholar
  77. 77.
    Veronese N, De Rui M, Bolzetta F, Toffanello ED, Coin A, Zambon S et al (2015) Serum 25-hydroxyvitamin D and the incidence of peripheral artery disease in the elderly: the Pro.V.A study. J Atheroscler Thromb 22(7):726–734.  https://doi.org/10.5551/jat.28134 CrossRefPubMedGoogle Scholar
  78. 78.
    Veronese N, Trevisan C, Bolzetta F, De Rui M, Zambon S, Musacchio E et al (2016) Hypovitaminosis D predicts the onset of orthostatic hypotension in older adults. J Am Soc Hypertens.  https://doi.org/10.1016/j.jash.2016.06.038 PubMedGoogle Scholar
  79. 79.
    Veronese N, Trevisan C, Carraro S, Sarti S, Zanforlini BM, De Rui M et al (2016) Hypovitaminosis D and fat mass in healthy older people. Eur J Clin Nutr.  https://doi.org/10.1038/ejcn.2016.95 Google Scholar

Copyright information

© European Geriatric Medicine Society 2018

Authors and Affiliations

  • Nicola Veronese
    • 1
  • Leonardo Punzi
    • 2
  • Cornel Sieber
    • 3
    • 4
  • Jurgen Bauer
    • 5
  • Jean-Yves Reginster
    • 6
  • Stefania Maggi
    • 1
  • On behalf of the Task Finish Group on “Arthritis” of the European Geriatric Medicine Society
  1. 1.National Research Council, Neuroscience Institute, Aging BranchPaduaItaly
  2. 2.Rheumatology Unit, Department of Medicine (DIMED)University of PadovaPaduaItaly
  3. 3.Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-NürnbergNurembergGermany
  4. 4.Krankenhaus Barmherzige Brüder RegensburgRegensburgGermany
  5. 5.Center for Geriatric Medicine, Agaplesion Bethanien Krankenhaus HeidelbergUniversity of HeidelbergHeidelbergGermany
  6. 6.Department of Public Health, Epidemiology and Health EconomicsUniversity of LiègeLiègeBelgium

Personalised recommendations