Prevalence of dynapenia and presarcopenia related to aging in adult community-dwelling Mexicans using two different cut-off points

  • Wendy Daniella Rodríguez-García
  • Luis García-Castañeda
  • Nayeli Vaquero-Barbosa
  • Víctor Manuel Mendoza-Núñez
  • Arturo Orea-Tejeda
  • Stany Perkisas
  • Maurits Vandewoude
  • Lilia Castillo-Martínez
Research Paper
  • 2 Downloads

Abstract

Objectives

To estimate the prevalence of dynapenia, presarcopenia, and sarcopenia in a Mexican community using two different cutoffs.

Materials and methods

This cross-sectional study included 724 subjects (521 women and 203 men) adults ≥ 50 years community-dwelling from Mexico City. We determined the prevalence of different muscle-related syndromes. Muscle strength was measured with handgrip strength and muscle mass was estimated by bioelectrical impedance. For the diagnosis of sarcopenia and presarcopenia, two criteria were used: (1) the cut-off points proposed by the European Working Group on Sarcopenia in Older People (EWGSOP) and (2) the cut-off points less than two standard deviations for gender-specific mean of Mexicans young adults.

Results

Muscle mass decreases with age, but not as rapid as muscle strength. With the specific Mexican cut-off points, the general prevalences were: 27.4% for dynapenia (n = 199), 12.8% for presarcopenia (n = 93), and 6.6% for sarcopenia (n = 48). In contrast, the prevalences were higher when we used the cut-off points for Caucasians (EWGSOP): 33.9% for dynapenia (n = 246), 38.1% for presarcopenia (n = 276), and 15.2% for sarcopenia (n = 110).

Conclusions

Diagnoses of dynapenia, presarcopenia, and sarcopenia should be estimated from cut-off points of the specific population; otherwise, it might be overestimated or underestimated. Early diagnosis of any of these conditions in community can prevent the occurrence of adverse effects.

Keywords

Prevalence Dynapenia Sarcopenia Cut-off points Mexico 

Notes

Acknowledgements

We want to thank Mexico City’s collective transportation system (METRO) and to the Master’s and Doctorate Program in Medical, Dental and Health Sciences, Universidad Nacional Autónoma de México (UNAM). Rodríguez-García WD is supported by a CONACYT Ph. D. scholarship, no. 250747.

Compliance with ethical standards

Conflict of interest

All authors state no conflict of interest.

Ethical approval

The Ethics Committee of the Universidad Nacional Autónoma de México Zaragoza Campus approved the research protocol for this study.

Informed consent

Each volunteer was informed about the aims of the study and agreed to participate after giving their informed consent.

References

  1. 1.
    Rosenberg (1989) Summary comments. Am J Clin Nutr 50:1231–1233CrossRefGoogle Scholar
  2. 2.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in older people. Age Ageing 39(4):412–423CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marini E, Buffa R, Saragat B, Coin A, Toffanello ED, Berton L et al (2012) The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin Interv Aging 7:585–591CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vandewoude MFJ, Alish CJ, Sauer AC, Hegazi RA (2012) Malnutrition-sarcopenia syndrome: is this the future of nutrition screening and assessment for older adults? J Aging Res 2012:651570CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rossi AP, Fantin F, Micciolo R, Bertocchi M, Bertassello P, Zanandrea V et al (2014) Identifying sarcopenia in acute care setting patients. J Am Med Dir Assoc 15(4):303.e7–303.e12CrossRefGoogle Scholar
  6. 6.
    Camina Martín MA, de Mateo Silleras B, Redondo del Río MP (2014) Body composition analysis in older adults with dementia. Anthropometry and bioelectrical impedance analysis: a critical review. Eur J Clin Nutr 68(11):1228–1233CrossRefPubMedGoogle Scholar
  7. 7.
    Clark BC, Manini TM (2008) Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 63:829–834CrossRefPubMedGoogle Scholar
  8. 8.
    Clark BC, Manini TM (2012) What is dynapenia? Nutrition 28(5):495–503CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:1–18CrossRefGoogle Scholar
  10. 10.
    Norman K, Stobäus N, Gonzalez MC, Schulzke J-D, Pirlich M (2011) Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr 30(2):135–142CrossRefPubMedGoogle Scholar
  11. 11.
    Bohannon RW (2008) Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther 31(1):3–10CrossRefPubMedGoogle Scholar
  12. 12.
    van Kan Abellan (2009) G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging 13(8):708–712CrossRefGoogle Scholar
  13. 13.
    Arango-Lopera VE, Arroyo P, Gutiérrez-Robledo LM, Perez-Zepeda MU, Cesari M (2013) Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging 13(3):259–262CrossRefGoogle Scholar
  14. 14.
    Alley DE, Shardell MD, Peters KW, McLean RR, Dam TTL, Kenny AM et al (2014) Grip strength cutpoints for the identification of clinically relevant weakness. J Gerontol A Biol 69(5):559–566CrossRefGoogle Scholar
  15. 15.
    Lardiés-Sánchez B, Sanz-Paris A, Boj-Carceller D, Cruz-Jentoft A (2016) Systematic review: prevalence of sarcopenia in ageing people using bioelectrical impedance analysis to assess muscle mass. Eur Geriatr Med 7:256–261CrossRefGoogle Scholar
  16. 16.
    Arango-Lopera VE, Arroyo P, Gutiérrez-Robledo LM, Pérez-Zepeda MU (2012) Prevalence of sarcopenia in Mexico City. Eur Geriatr Med 3(3):157–160CrossRefGoogle Scholar
  17. 17.
    World Health Organization (2015) World report on ageing and health 2015. In: World Health Organization, Ageing and life-course [website]. Geneva: World Health Organization; 2015 (http://www.who.int/ageing/publications/world-report-2015/en/)
  18. 18.
    Rodríguez-García WD, García-Castañeda L, Orea-Tejeda A, Mendoza-Nuñez V, González-Islas DG, Santillán-Díaz C et al (2017) Handgrip strength: reference values and its relationship with bioimpedance and anthropometric variables. Clin Nutr ESPEN 19:54–58CrossRefGoogle Scholar
  19. 19.
    Lohman T, Roche A, Martorell R (1988) Anthropometric standarization reference manual. Human Kinetics Publisher, IllinoisGoogle Scholar
  20. 20.
    Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM et al (2004) Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr 23(5):1226–1243CrossRefPubMedGoogle Scholar
  21. 21.
    Janssen I, Heymsfield SB, Baumgartner RN, Ross R, Vetrano DL, Landi F et al (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471CrossRefPubMedGoogle Scholar
  22. 22.
    Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A et al (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95(5):1851–1860CrossRefPubMedGoogle Scholar
  23. 23.
    Basile C, Della-morte D, Cacciatore F, Gargiulo G, Galizia G, Roselli M et al (2014) Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp Gerontol 58:43–46CrossRefPubMedGoogle Scholar
  24. 24.
    Norman K, Smoliner C, Valentini L, Lochs H, Pirlich M (2007) Is bioelectrical impedance vector analysis of value in the elderly with malnutrition and impaired functionality? Nutrition 23(7–8):564–569CrossRefPubMedGoogle Scholar
  25. 25.
    Norman K, Stobüs N, Pirlich M, Bosy-Westphal A (2012) Bioelectrical phase angle and impedance vector analysis—clinical relevance and applicability of impedance parameters. Clin Nutr 31(6):854–861CrossRefPubMedGoogle Scholar
  26. 26.
    Espinosa MA, Rivas L, González EC, Atilano X, Miranda P, Correa-Rolter R (2007) Vectores de impedancia bioeléctrica para la composición corporal en población mexicana. Rev Invest Clin 59:15e24Google Scholar
  27. 27.
    Lukaski HC, Piccoli A (2012) Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In: Preedy V (ed) Handbook of anthropometry. Springer, London, pp 287–315CrossRefGoogle Scholar
  28. 28.
    Pagotto V, Silveira EA (2014) Methods, diagnostic criteria, cutoff points, and prevalence of sarcopenia among older people. Sci World J 2014:231312CrossRefGoogle Scholar
  29. 29.
    Bijlsma AY, Meskers CGM, Ling CHY, Narici M, Kurrle SE, Cameron ID et al (2013) Defining sarcopenia: the impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. Age 35(3):871–881CrossRefPubMedGoogle Scholar
  30. 30.
    Masanes F, Culla A, Navarro-Gonzalez M, Navarro-Lopez M, Sacanella E, Torres B et al (2012) Prevalence of sarcopenia in healthy community-dwelling elderly in an Urban area of Barcelona (Spain). J Nutr Health Aging 16(2):184–187CrossRefPubMedGoogle Scholar
  31. 31.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (Sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr 50:889–896CrossRefGoogle Scholar
  32. 32.
    Cherin P, Voronska E, Fraoucene N, De Jaeger C (2014) Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res 26(2):137–146CrossRefPubMedGoogle Scholar
  33. 33.
    Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67A(1):28–40CrossRefGoogle Scholar
  34. 34.
    Auyeung TW, Wah S, Lee J, Leung J, Kwok T, Woo J (2014) Age-associated decline of muscle mass, grip strength and gait speed: a 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr Gerontol Int. 14(S1):76–84CrossRefPubMedGoogle Scholar
  35. 35.
    Faigenbaum AD, MacDonald JP (2017) Dynapenia: it’s not just for grown-ups anymore. Acta Paediatr 106(5):696–697CrossRefPubMedGoogle Scholar
  36. 36.
    Laurson KR, Saint-Maurice PF, Welk GJ, Eisenmann JC (2016) Reference curves for field tests of musculoskeletal fitness in US children and adolescents. J Strength Cond Res 309:1Google Scholar
  37. 37.
    Mijnarends DM, Meijers JMM, Halfens RJG, Ter Borg S, Luiking YC, Verlaan S et al (2013) Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc 14(3):170–178CrossRefPubMedGoogle Scholar
  38. 38.
    Lourenço RA, Pérez-Zepeda M, Gutiérrez-Robledo L, García-García FJ, Rodríguez Mañas L (2015) Performance of the European working group on sarcopenia in older people algorithm in screening older adults for muscle mass assessment. Age Ageing 44(2):334–338CrossRefPubMedGoogle Scholar
  39. 39.
    Alemán-Mateo H, Ruiz Valenzuela RE (2014) Skeletal muscle mass indices in healthy young Mexican adults aged 20–40 years: implications for diagnoses of sarcopenia in the elderly population. Sci World J 2014:672158Google Scholar
  40. 40.
    Andersen-Ranberg K, Petersen I, Frederiksen H, Mackenbach JP, Christensen K (2009) Cross-national differences in grip strength among 50+ year-old Europeans: results from the SHARE study. Eur J Ageing 6(3):227–236CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gale CR, Martyn CN, Cooper C, Sayer AA (2007) Grip strength, body composition, and mortality. Int J Epidemiol 36(1):228–235CrossRefPubMedGoogle Scholar
  42. 42.
    Frederiksen H, Hjelmborg J, Mortensen J, McGue M, Vaupel JW, Christensen K (2006) Age trajectories of grip strength: cross-sectional and longitudinal data among 8,342 Danes aged 46 to 102. Ann Epidemiol 16(7):554–562CrossRefPubMedGoogle Scholar
  43. 43.
    de Souza Vasconcelos KS, Domingues Dias JM, de Carvalho Bastone A, Alvarenga Vieira R, de Souza Andrade AC, Rodrigues Perracini M et al (2016) Handgrip strength cutoff points to identify mobility limitation in community-dwelling older people and associated factors. J Nutr Health Aging 20(3):306–315CrossRefGoogle Scholar
  44. 44.
    Alexandre T, Duarte Y, Wong R, Lebrao M (2014) Sarcopenia according to the European Working group on sarcopenia in older people versus dynapenia as a risk factor for disability in elderly. J Nutr Health Aging 18(8):547–553CrossRefGoogle Scholar
  45. 45.
    Kim TN, Yang SJ, Yoo HJ, Lim KI, Kang HJ, Song W et al (2009) Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes 33(8):885–892CrossRefGoogle Scholar
  46. 46.
    Biolo G, Cederholm T, Muscaritoli M (2014) Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr 33(5):737–748CrossRefPubMedGoogle Scholar

Copyright information

© European Geriatric Medicine Society 2018

Authors and Affiliations

  • Wendy Daniella Rodríguez-García
    • 1
  • Luis García-Castañeda
    • 2
  • Nayeli Vaquero-Barbosa
    • 2
  • Víctor Manuel Mendoza-Núñez
    • 3
  • Arturo Orea-Tejeda
    • 4
  • Stany Perkisas
    • 5
  • Maurits Vandewoude
    • 5
  • Lilia Castillo-Martínez
    • 2
  1. 1.Centro Regional de Educación Superior, Campus Zona NorteUniversidad Autónoma de GuerreroChilpancingoMexico
  2. 2.Clinical Nutrition DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
  3. 3.Unidad de Investigación en Gerontología, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  4. 4.Heart Failure and Respiratory Distress Clinic, Cardiology DepartmentInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
  5. 5.Department of Geriatrics, ZNA St. ElisabethUniversity of AntwerpAntwerpBelgium

Personalised recommendations