Skip to main content

Advertisement

Log in

A Context for Connectivity: Insights to Environmental Heterogeneity in the Late Pleistocene and Holocene of Southern Africa Through Measuring Isotope Space and Overlap

  • Research
  • Published:
Journal of Paleolithic Archaeology Aims and scope Submit manuscript

Abstract

Southern Africa is characterized by the development of varied Middle and Later Stone Age techno-complexes and behaviors against a backdrop of complex climatic conditions during the late Pleistocene and Holocene. While much work has been devoted to reconstructing regional environmental patterns, site-specific ecological and habitat contexts have primarily focused on a single site or small area. The local manifestations of regional climatic conditions are analyzed here by compiling faunal enamel stable isotope data from 13 sites across South Africa, Lesotho, and Zambia. Measuring isotope space and overlap reveals distinct on-the-ground habitat circumstances across regions and even variability within some regions, especially in the period ~ 36,000–5000 years ago. This analytical framework aims to test whether sites within the same environmental zones overlap in isotope space and finds that there is greater intra-regional environmental heterogeneity than expected. Patterns of contracting and expanding isotope space, especially along the oxygen axis, may provide insight to shifts in rainfall seasonality and, perhaps, sources of precipitation. This increased understanding of the local manifestations of regional climatic conditions through time and space will be a critical component of models of population movement and interactions in the late Pleistocene and Holocene of southern Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The dataset compiled and analyzed during the current study are included in this published article and its supplementary online resources.

References

  • Ambrose, S. H., & DeNiro, M. J. (1986). The isotopic ecology of East African mammals. Oecologia, 69(3), 395–406.

    Article  Google Scholar 

  • Ames, C. J., Gliganic, L. A., Cordova, C., Boyd, K., Jones, B. G., Maher, L., & Collins, B. (2020). Chronostratigraphy, site formation, and palaeoenvironmental context of late Pleistocene and Holocene occupations at Grassridge rock shelter (Eastern Cape, South Africa). Open Quaternary, 6(1), 1–19.

    Article  Google Scholar 

  • Avery, D. M. (2004). Size variation in the common molerat Cryptomys hottentotus from Southern Africa and its potential for palaeoenvironmental reconstruction. Journal of Archaeological Science, 31(3), 273–282.

    Article  Google Scholar 

  • Backwell, L. R., McCarthy, T. S., Wadley, L., Henderson, Z., Steininger, C. M., Deklerk, B., Barré, M., Lamothe, M., Chase, B. M., Woodborne, S., & Susino, G. J. (2014). Multiproxy record of late Quaternary climate change and Middle Stone Age human occupation at Wonderkrater, South Africa. Quaternary Science Reviews, 99, 42–59.

    Article  Google Scholar 

  • Bamford, M. K. (2021). Pollen, charcoal and phytolith records from the Late Quaternary of Southern Africa: Vegetation and climate interpretations. South African Journal of Geology 2021, 124(4), 1047–1054.

    Article  Google Scholar 

  • Bar-Matthews, M., Marean, C. W., Jacobs, Z., Yaryanas, P., Fisher, E. C., Herries, A. I. R., Brown, K., Williams, H. M., Bernatchez, J., Ayalon, A., & Nilssen, P. J. (2010). A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ya from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews, 29(17–18), 2131–2145.

    Article  Google Scholar 

  • Baumann, C., Hussain, S. T., Roblíčková, M., Riede, F., Mannino, M. A., & Bocherens, H. (2023). Evidence for hunter-gatherer impacts on raven diet and ecology in the Gravettian of Southern Moravia. Nature Ecology & Evolution, 7, 1302–1314.

    Article  Google Scholar 

  • Beaumont, P. B., Miller, G. H., & Vogel, J. C. (1992). Contemplating old clues to the impact of future greenhouse climates in South Africa. South African Journal of Science, 88(9–10), 490–498.

    Google Scholar 

  • Beyer, R. M., Krapp, M., Eriksson, A., & Manica, A. (2021). Climatic windows for human migration out of Africa in the past 300,000 years. Nature Communications, 12(1), 1–10.

    Article  Google Scholar 

  • Blome, M. W., Cohen, A. S., Tryon, C. A., Brooks, A. S., & Russell, J. (2012). The environmental context for the origins of modern human diversity: A synthesis of regional variability in African climate 150,000–30,000 years ago. Journal of Human Evolution, 62(5), 563–592.

    Article  Google Scholar 

  • Blumenthal, S. A., Levin, N. E., Brown, F. H., Brugal, J. P., Chritz, K. L., Harris, J. M., Jehle, G. E., & Cerling, T. E. (2017). Aridity and hominin environments. Proceedings of the National Academy of Sciences, 114(28), 7331–7336.

    Article  Google Scholar 

  • Bousman, C. B., & Brink, J. S. (2018). The emergence, spread, and termination of the Early Later Stone Age event in South Africa and southern Namibia. Quaternary International, 495, 116–135.

    Article  Google Scholar 

  • Braun, K., Bar-Matthews, M., Matthews, A., Ayalon, A., Cowling, R. M., Yaryanas, P., Fisher, E. C., Dyez, K., Zilberman, T., & Marean, C. W. (2019). Late Pleistocene records of speleothem stable isotopic compositions from Pinnacle Point on the South African south coast. Quaternary Research, 91(1), 265–288.

    Article  Google Scholar 

  • Breman, E., Ekblom, A., Gillson, L., & Norström, E. (2019). Phytolith-based environmental reconstruction from an altitudinal gradient in Mpumalanga, South Africa, 10,600 BP–present. Review of Palaeobotany and Palynology, 263, 104–116.

    Article  Google Scholar 

  • Brink, J. S. (1999). Preliminary report on a caprine from the Cape mountains, South Africa. Archaeozoologia, 10, 11–26.

    Google Scholar 

  • Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.

    Article  Google Scholar 

  • Brook, G. A., Scott, L., Railsback, L. B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74(7), 870–884.

    Article  Google Scholar 

  • Carr, A., Chase, B. M., & Mackay, A. (2016). Mid to Late Quaternary landscape and environmental dynamics in the Middle Stone Age of southern South Africa. In S. Jones & B. Stewart (Eds.), Africa from MIS 6–2 (pp. 23–47). Springer.

    Chapter  Google Scholar 

  • Carr, A. S., Chase, B. M., Birkinshaw, S. J., Holmes, P. J., Rabumbulu, M., & Stewart, B. A. (2023). Paleolakes and socioecological implications of last glacial “greening” of the South African interior. Proceedings of the National Academy of Sciences, 120(21), e2221082120.

    Article  Google Scholar 

  • Cawthra, H. C., Cowling, R. M., Andò, S., & Marean, C. W. (2020). Geological and soil maps of the Palaeo-Agulhas Plain for the Last Glacial Maximum. Quaternary Science Reviews, 235, 105858.

    Article  Google Scholar 

  • Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African Bovidae based on stable isotope analysis. Journal of Mammalogy, 84(2), 456–470.

    Article  Google Scholar 

  • Cerling, T. E., Harris, J. M., Hart, J., Yaleme, P., Klingel, H., Leakey, M. G., Levin, N. E., & Passey, B. H. (2008). Stable isotope ecology of the common hippopotamus. Journal of Zoology, 276(2), 204–212.

    Article  Google Scholar 

  • Cerling, T. E., Andanje, S. A., Blumenthal, S. A., Brown, F. H., Chritz, K. L., Harris, J. M., Hart, J. A., Kirera, F. M., Yaleme, P., Leakey, L. N., Leakey, M. G., Levin, N. E., Manthi, F. K., Passey, B. H., & Uno, K. T. (2015). Dietary changes of large herbivores in the Turyana Basin, Kenya from 4 to 1 million years ago. Proceedings of the National Academy of Sciences, 112, 11467–11472.

    Article  Google Scholar 

  • Cerling T. E. (2014). Stable isotope evidence for hominin environments in Africa. In: Cerling, T. E. (ed.) Treatise on geochemistry. Vol. 14: Archaeology and anthropology. Oxford, UK: Springer, pp. 158–166.

  • Chase, B. (2009). Evaluating the use of dune sediments as a proxy for palaeo-aridity: A Southern African case study. Earth-Science Reviews, 93(1–2), 31–45.

    Article  Google Scholar 

  • Chase, B. M. (2010). South African palaeoenvironments during marine oxygen isotope stage 4: A context for the Howiesons Poort and Still Bay industries. Journal of Archaeological Science, 37(6), 1359–1366.

    Article  Google Scholar 

  • Chase, B. M. (2021). Orbital forcing in Southern Africa: Towards a conceptual model for predicting deep time environmental change from an incomplete proxy record. Quaternary Science Reviews, 265, 107050.

    Article  Google Scholar 

  • Chase, B. M., & Meadows, M. E. (2007). Late Quaternary dynamics of Southern Africa’s winter rainfall zone. Earth-Science Reviews, 84(3–4), 103–138.

    Article  Google Scholar 

  • Chase, B. M., & Quick, L. J. (2018). Influence of Agulhas forcing of Holocene climate change in South Africa’s southern Cape. Quaternary Research, 90(2), 303–309.

    Article  Google Scholar 

  • Chase, B. M., Boom, A., Carr, A. S., Meadows, M. E., & Reimer, P. J. (2013). Holocene climate change in southernmost South Africa: Rock hyrax middens record shifts in the southern westerlies. Quaternary Science Reviews, 82, 199–205.

    Article  Google Scholar 

  • Chase, B. M., Boom, A., Carr, A. S., Carré, M., Chevalier, M., Meadows, M. E., Pedro, J. B., Stager, J. C., & Reimer, P. J. (2015a). Evolving southwest African response to abrupt deglacial North Atlantic climate change events. Quaternary Science Reviews, 121, 132–136.

    Article  Google Scholar 

  • Chase, B. M., Lim, S., Chevalier, M., Boom, A., Carr, A. S., Meadows, M. E., & Reimer, P. J. (2015b). Influence of tropical easterlies in Southern Africa’s winter rainfall zone during the Holocene. Quaternary Science Reviews, 107, 138–148.

    Article  Google Scholar 

  • Chase, B. M., Chevalier, M., Boom, A., & Carr, A. S. (2017). The dynamic relationship between temperate and tropical circulation systems across South Africa since the last glacial maximum. Quaternary Science Reviews, 174, 54–62.

    Article  Google Scholar 

  • Chase, B. M., Harris, C., de Wit, M. J., Kramers, J., Doel, S., & Stankiewicz, J. (2021). South African speleothems reveal influence of high- and low-latitude forcing over the past 113.5 ky. Geology, 49(11), 1353–1357.

    Article  Google Scholar 

  • Chazan, M., Berna, F., Brink, J., Ecker, M., Holt, S., Porat, N., Lee-Thorp, J. A., & Horwitz, L. K. (2020). Archeology, environment, and chronology of the Early Middle Stone Age component of Wonderwerk Cave. Journal of Paleolithic Archaeology, 3, 302–335.

    Article  Google Scholar 

  • Clark, J. L. (2017). The Howieson’s Poort fauna from Sibudu Cave: Documenting continuity and change within Middle Stone Age industries. Journal of Human Evolution, 107, 49–70.

    Article  Google Scholar 

  • Cleghorn, N., Potts, A. J., & Cawthra, H. C. (2020). The Palaeo-Agulhas Plain: A lost world and extinct ecosystem. Quaternary Science Reviews, 235, 106308.

    Article  Google Scholar 

  • Cockcroft, M. J., Wilkinson, M. J., & Tyson, P. D. (1987). The application of a present-day climatic model to the late Quaternary in Southern Africa. Climatic Change, 10(2), 161–181.

    Article  Google Scholar 

  • Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., De Ruiter, D., Sealy, J., Grant, R., & Fourie, N. (2007). Diets of savanna ungulates from stable carbon isotope composition of faeces. Journal of Zoology, 273(1), 21–29.

    Article  Google Scholar 

  • Codron, D., Brink, J. S., Rossouw, L., Clauss, M., Codron, J., Lee-Thorp, J. A., & Sponheimer, M. (2008). Functional differentiation of African grazing ruminants: An example of specialized adaptations to very small changes in diet. Biological Journal of the Linnean Society, 94(4), 755–764.

    Article  Google Scholar 

  • Copeland, S. R., Cawthra, H. C., Fisher, E. C., Lee-Thorp, J. A., Cowling, R. M., Le Roux, P. J., Hodgkins, J., & Marean, C. W. (2016). Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape floristic region, South Africa. Quaternary Science Reviews, 141, 65–84.

    Article  Google Scholar 

  • Cordova, C. E. (2013). C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quaternary International, 287, 121–140.

    Article  Google Scholar 

  • Cowling, R. M. (1983). The occurrence of C3 and C4 grasses in fynbos and allied shrublands in the South Eastern Cape, South Africa. Oecologia, 58(1), 121–127.

    Article  Google Scholar 

  • Cowling, R. M., & Holmes, P. M. (1992). Endemism and speciation in a lowland flora from the Cape Floristic Region. Biological Journal of the Linnean Society, 47(4), 367–383.

    Article  Google Scholar 

  • Cowling, R. M., Potts, A. J., Franklin, J., Midgley, G. F., Engelbrecht, F., & Marean, C. W. (2020). Describing a drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the Palaeo-Agulhas Plain. Quaternary Science Reviews, 235, 105866.

    Article  Google Scholar 

  • Crimp, S. J., & Mason, S. J. (1999). The extreme precipitation event of 11 to 16 February 1996 over South Africa. Meteorology and Atmospheric Physics, 70(1–2), 29–42.

    Article  Google Scholar 

  • Deacon, H. J. (1983). Another look at the Pleistocene climates of South Africa. South African Journal of Science, 79(8), 325–328.

    Google Scholar 

  • Deacon, J., & Lancaster, N. (1988). Late Quaternary palaeoenvironments of Southern Africa (p. 225). Clarendon Press.

    Google Scholar 

  • Deacon, H. J., Deacon, J., Scholtz, A., Thackeray, J. F., Brink, J. S., & Vogel, J. C. (1984). Correlation of palaeoenvironmental data from the Late Pleistocene and Holocene deposits at Boomplaas Cave, southern Cape. In: Vogel, J. C. (ed.) Late Cainozic palaeoclimates of the Southern Hemisphere. International symposium held by the South African Society for Quaternary Research; Swaziland. Balkema, pp. 339–351.

  • Diamond, R. E., & Harris, C. (2019). Annual shifts in O- and H-isotope composition as measures of recharge: The case of the Table Mountain springs, Cape Town, South Africa. Hydrogeology Journal, 27(8), 2993–3008.

    Article  Google Scholar 

  • Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences, 107(13), 5738–5743.

    Article  Google Scholar 

  • Dupont, L. M., & Kuhlmann, H. (2017). Glacial-interglacial vegetation change in the Zambezi catchment. Quaternary Science Reviews, 155, 127–135.

    Article  Google Scholar 

  • Dupont, L. M., Caley, T., Kim, J. H., Castañeda, I., Malaizé, B., & Giraudeau, J. (2011). Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean. Climate of the Past, 7(4), 1209–1224.

    Article  Google Scholar 

  • Dupont, L. M., Zhao, X., Charles, C., Faith, J. T., & Braun, D. (2022). Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479). Climate of the Past, 18(1), 1–21.

    Article  Google Scholar 

  • Ecker, M., Brink, J., Chazan, M., Horwitz, L. K., & Lee-Thorp, J. A. (2017). Radiocarbon dates constrain the timing of environmental and cultural shifts in the Holocene strata of Wonderwerk Cave, South Africa. Radiocarbon, 59(4), 1067–1086.

    Article  Google Scholar 

  • Ecker, M., Brink, J., Horwitz, L. K., Scott, L., & Lee-Thorp, J. A. (2018). A 12,000 year record of changes in herbivore niche separation and palaeoclimate (Wonderwerk Cave, South Africa). Quaternary Science Reviews, 180, 132–144.

    Article  Google Scholar 

  • Eckrich, C. A., Albeke, S. E., Flaherty, E. A., Bowyer, R. T., & Ben-David, M. (2020). rKIN: Kernel-based method for estimating isotopic niche size and overlap. Journal of Animal Ecology, 89(3), 757–771.

    Article  Google Scholar 

  • Engelbrecht, F. A., Marean, C. W., Cowling, R. M., Engelbrecht, C. J., Neumann, F. H., Scott, L., Nkoana, R., O’Neal, D., Fisher, E., Shook, E., Franklin, J., Thatcher, M., McGregor, J. L., Van der Merwe, J., Dedekind, Z., & Difford, M. (2019). Downscaling Last Glacial Maximum climate over Southern Africa. Quaternary Science Reviews, 226, 105879.

    Article  Google Scholar 

  • Esteban, I., Marean, C. W., Cowling, R. M., Fisher, E. C., Cabanes, D., & Albert, R. M. (2020a). Palaeoenvironments and plant availability during MIS 6 to MIS 3 on the edge of the Palaeo-Agulhas Plain (south coast, South Africa) as indicated by phytolith analysis at Pinnacle Point. Quaternary Science Reviews, 235, 105667.

    Article  Google Scholar 

  • Esteban, I., Bamford, M. K., House, A., Miller, C. S., Neumann, F. H., Schefuß, E., Pargeter, J., Cawthra, H. C., & Fisher, E. C. (2020b). Coastal palaeoenvironments and hunter-gatherer plant-use at Waterfall Bluff rock shelter in Mpondoland (South Africa) from MIS 3 to the Early Holocene. Quaternary Science Reviews, 250, 106664.

    Article  Google Scholar 

  • Faith, J. T. (2018). Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 571–578.

    Article  Google Scholar 

  • Faith, J. T., Chase, B. M., & Avery, D. M. (2019). Late Quaternary micromammals and the precipitation history of the southern Cape, South Africa. Quaternary Research, 91(2), 848–860.

    Article  Google Scholar 

  • Fisher, E. C., Bar-Matthews, M., Jerardino, A., & Marean, C. W. (2010). Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quaternary Science Reviews, 29(11–12), 1382–1398.

    Article  Google Scholar 

  • France, C. A., & Owsley, D. W. (2015). Stable carbon and oxygen isotope spacing between bone and tooth collagen and hydroxyapatite in human archaeological remains. International Journal of Osteoarchaeology, 25(3), 299–312.

    Article  Google Scholar 

  • Gagnon, M., & Chew, A. E. (2000). Dietary preferences in extant African Bovidae. Journal of Mammalogy, 81(2), 490–511.

    Article  Google Scholar 

  • Harris, C., Burgers, C., Miller, J., & Rawoot, F. (2010). O-and H-isotope record of Cape Town rainfall from 1996 to 2008, and its application to recharge studies of Table Mountain groundwater, South Africa. South African Journal of Geology, 113(1), 33–56.

    Article  Google Scholar 

  • Herbert, A. V., & Fitchett, J. M. (2022). Synthesising the pollen records for the Drakensberg-Maloti through quantitative modelling. Quaternary International, 611, 81–90.

    Google Scholar 

  • Hermes, T. R., Frachetti, M. D., Bullion, E. A., Maksudov, F., Mustafokulov, S., & Makarewicz, C. A. (2018). Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s Silk Roads. Scientific Reports, 8(1), 5177.

    Article  Google Scholar 

  • Hette-Tronquart, N. (2019). Isotopic niche is not equal to trophic niche. Ecology Letters, 22(11), 1987–1989.

    Article  Google Scholar 

  • Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Ramsey, C. B., & Pearson, C. (2020). SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon, 62(4), 759–778.

    Article  Google Scholar 

  • Holmgren, K., Lee-Thorp, J. A., Cooper, G. R., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S., & Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22(21–22), 2311–2326.

    Article  Google Scholar 

  • Hublin, J. J., Ben-Ncer, A., Bailey, S. E., Freidline, S. E., Neubauer, S., Skinner, M. M., Bergmann, I., Cabec, A., Benazzi, S., Harvati, K., & Gunz, P. (2017). New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature, 546(7657), 289–292.

    Article  Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.

    Article  Google Scholar 

  • Ivanciu, I., Ndarana, T., Matthes, K., & Wahl, S. (2022). On the ridging of the South Atlantic Anticyclone over South Africa: The impact of Rossby wave breaking and of climate change. Geophysical Research Letters, 49(20), e2022GL099607.

    Article  Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602.

    Article  Google Scholar 

  • Jacobs, Z., & Roberts, R. G. (2009). Were environmental or demographic factors the driving force behind Middle Stone Age innovations in Southern Africa. South African Journal of Science, 105, 333–334.

    Google Scholar 

  • Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grun, R., Mackay, A., Mitchell, P. J., Vogelsang, R., & Wadley, L. (2008a). Ages for the Middle Stone Age of Southern Africa: Implications for human behavior and dispersal. Science, 322, 733–735.

    Article  Google Scholar 

  • Jacobs, Z., Wintle, A., Duller, G., Roberts, R. G., & Wadley, L. (2008b). New ages for the post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa. Journal of Archaeological Science, 35, 1790–1807.

    Article  Google Scholar 

  • Jerardino, A. (1993). Mid-to late-Holocene sea-level fluctuations: The archaeological evidence at Tortoise Cave, South-western Cape, South Africa. South African Journal of Science, 89(10), 481–488.

    Google Scholar 

  • Jerardino, A. (1995). Late Holocene Neoglacial episodes in southern South America and Southern Africa: A comparison. The Holocene, 5(3), 361–368.

    Article  Google Scholar 

  • Jerardino, A. (2022). Coastal foraging on the West Coast of South Africa in the midst of mid-Holocene climate change. The Journal of Island and Coastal Archaeology, 17(4), 585–605.

    Article  Google Scholar 

  • Jerardino, A., Navarro, R., Orton, J., Button, R., Halkett, D., Webley, L., Tusenius, M., Hoffman, T., & February, E. (2018). Late Holocene climatic and cultural variability at a focal point of settlement near Lamberts Bay, South Africa: Test excavations at Soutpansklipheuwel. South African Archaeological Bulletin, 73(207), 13–34.

    Google Scholar 

  • Khumalo, W. (2022). Using the fossil charcoal and pollen records from Elands Bay Cave and Boomplaas Cave, South Africa, to reconstruct variability in local hydroclimate and seasonality (Master’s thesis. University of Cape Town.

    Google Scholar 

  • Kingdon, J. (1982). East African mammals. Bovids. University of Chicago Press.

    Google Scholar 

  • Kingdon, J. (2015). The Kingdon field guide to African mammals. Bloomsbury Publishing.

    Google Scholar 

  • Knight, J., & Fitchett, J. M. (2021). A proposed chronostratigraphic framework for the late Quaternary of Southern Africa. South African Journal of Geology 2021, 124(4), 843–862.

    Article  Google Scholar 

  • Knight, J., & Stratford, D. (2020). Investigating lithic scatters in arid environments: The Early and Middle Stone Age in Namibia. Proceedings of the Geologists’ Association, 131(6), 778–783.

    Article  Google Scholar 

  • Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences, 107(46), 19691–19695.

    Article  Google Scholar 

  • Lee-Thorp, J. A., & Beaumont, P. B. (1995). Vegetation and seasonality shifts during the late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quaternary Research, 43(3), 426–432.

    Article  Google Scholar 

  • Lehmann, S. B., Levin, N. E., Braun, D. R., Stynder, D. D., Zhu, M., Le Roux, P. J., & Sealy, J. (2018). Environmental and ecological implications of strontium isotope ratios in mid-Pleistocene fossil teeth from Elandsfontein, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 84–94.

    Article  Google Scholar 

  • Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, 103(30), 11201–11205.

    Article  Google Scholar 

  • Levin, N. E., Zipser, E. J., & Cerling, T. E. (2009). Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa. Journal of Geophysical Research, 114(D23), D23.

    Article  Google Scholar 

  • Levin, N. E., Haile-Selassie, Y., Frost, S. R., & Saylor, B. Z. (2015). Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proceedings of the National Academy of Sciences, 112(40), 12304–12309.

    Article  Google Scholar 

  • Loftus, E., Stewart, B. A., Dewar, G., & Lee-Thorp, J. A. (2015). Stable isotope evidence of late MIS 3 to middle Holocene palaeoenvironments from Sehonghong Rockshelter, eastern Lesotho. Journal of Quaternary Science, 30(8), 805–816.

    Article  Google Scholar 

  • Loftus, E., Sealy, J., & Lee-Thorp, J. A. (2016). New radiocarbon dates and Bayesian models for Nelson Bay Cave and Byneskranskop 1: Implications for the South African Later Stone Age sequence. Radiocarbon, 58(2), 365–381.

    Article  Google Scholar 

  • Loftus, E., Pargeter, J., Mackay, A., Stewart, B. A., & Mitchell, P. J. (2019). Late Pleistocene human occupation in the Maloti-Drakensberg region of Southern Africa: New radiocarbon dates from Rose Cottage Cave and inter-site comparisons. Journal of Anthropological Archaeology, 56, 101117.

    Article  Google Scholar 

  • Lombard, M., Bradfield, J., Caruana, M. V., Makhubela, T. V., Dusseldorp, G. L., Kramers, J. D., & Wurz, S. (2022). The Southern African Stone Age sequence updated (II). South African Archaeological Bulletin, 77(217), 172–212.

    Google Scholar 

  • Lüdecke, T., Leichliter, J. N., Aldeias, V., Bamford, M. K., Biro, D., Braun, D. R., Capelli, C., Cybulski, J. D., Duprey, N. N., Ferreira da Silva, M. J., Foreman, A. D., Habermann, J. M., Haug, G. H., Martinez, F. I., Mathe, J., Mulch, A., Sigman, D. M., Vonhof, H., Bobe, R., … Martínez-García, A. (2022). Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, Central Mozambique. Frontiers in Ecology and Evolution, 10, 1107.

    Article  Google Scholar 

  • Lukich, V., Cowling, S., & Chazan, M. (2020). Palaeoenvironmental reconstruction of Kathu Pan, South Africa, based on sedimentological data. Quaternary Science Reviews, 230, 106153.

    Article  Google Scholar 

  • Luyt, J., Hare, V. J., & Sealy, J. (2019). The relationship of ungulate δ13C and environment in the temperate biome of Southern Africa, and its palaeoclimatic application. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 282–291.

    Article  Google Scholar 

  • Mackay, A., Stewart, B. A., & Chase, B. M. (2014). Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. Journal of Human Evolution, 72, 26–51.

    Article  Google Scholar 

  • Mackay, A., Armitage, S. J., Niespolo, E. M., Sharp, W. D., Stahlschmidt, M. C., Blackwood, A. F., Boyd, K. C., Chase, B. M., Lagle, S. E., Kaplan, C. F., Low, M. A., Martisius, N. L., McNeill, P. J., Moffat, I., O’Driscoll, C. A., Rudd, R., Orton, J., & Steele, T. E. (2022). Environmental influences on human innovation and behavioural diversity in Southern Africa 92–80 thousand years ago. Nature Ecology & Evolution, 6(4), 361–369.

    Article  Google Scholar 

  • Marean, C. W., Cowling, R. M., & Franklin, J. (2020). The Palaeo-Agulhas Plain: Temporal and spatial variation in an extraordinary extinct ecosystem of the Pleistocene of the Cape Floristic Region. Quaternary Science Reviews, 235, 106161.

    Article  Google Scholar 

  • McCall, G. S. (2007). Behavioral ecological models of lithic technological change during the later Middle Stone Age of South Africa. Journal of Archaeological Science, 34(10), 1738–1751.

    Article  Google Scholar 

  • Miller, G. H., Beaumont, P. B., Deacon, H. J., Brooks, A. S., Hare, P. E., & Jull, A. J. T. (1999). Earliest modern humans in Southern Africa dated by isoleucine epimerization in ostrich eggshell. Quaternary Science Reviews, 18(13), 1537–1548.

    Article  Google Scholar 

  • Mitchell, P. J. (1993a). Archaeological investigations at two Lesotho rock-shelters: Terminal Pleistocene/early Holocene assemblages from Ha Makotoko and Ntloana Tsoana. Proceedings of the Prehistoric Society, 59, 39–60.

    Article  Google Scholar 

  • Mitchell, P. J. (1993b). The archaeology of Tloutle rock shelter, Maseru District, Lesotho. Navorsinge van die Nasionale Museum: Researches of the National Museum, 9(4), 78–79.

    Google Scholar 

  • Mitchell, P. J., & Vogel, J. C. (1994). New radiocarbon dates from Sehonghong rock shelter, Lesotho. South African Journal of Science, 90(5), 284–288.

    Google Scholar 

  • Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute.

  • Nel, T. H., & Henshilwood, C. S. (2016). The small mammal sequence from the c. 76–72 ya Still Bay levels at Blombos Cave, South Africa–taphonomic and palaeoecological implications for human behaviour. PLoS ONE, 11(8), e0159817.

    Article  Google Scholar 

  • Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5(8), 429–436.

    Article  Google Scholar 

  • Pargeter, J., Loftus, E., & Mitchell, P. J. (2017). New ages from Sehonghong rock shelter: Implications for the late Pleistocene occupation of highland Lesotho. Journal of Archaeological Science: Reports, 12, 307–315.

    Google Scholar 

  • Pargeter, J., Loftus, E., Mackay, A., Mitchell, P. J., & Stewart, B. (2018). New ages from Boomplaas Cave, South Africa, provide increased resolution on late/terminal Pleistocene human behavioural variability. Azania: Archaeological Research in Africa, 53(2), 156–184.

    Article  Google Scholar 

  • Parker, A. G., Lee-Thorp, J., & Mitchell, P. J. (2011). Late Holocene Neoglacial conditions from the Lesotho highlands, Southern Africa: Phytolith and stable carbon isotope evidence from the archaeological site of Likoaeng. Proceedings of the Geologists’ Association, 122(1), 201–211.

    Article  Google Scholar 

  • Pestle, W. J., Crowley, B. E., & Weirauch, M. T. (2014). Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS ONE, 9(7), e102844.

    Article  Google Scholar 

  • Phillipson, D. W. (1973). The prehistoric succession in Eastern Zambia: A preliminary report. Azania, 8, 3–24.

    Article  Google Scholar 

  • Phillipson, D. W. (1976). The prehistory of eastern Zambia. Nairobi, Kenya: British Institute in Eastern Africa.

  • Preston-Whyte, R. A., & Tyson, P. D. (1988). Atmosphere and weather of Southern Africa. Oxford University Press.

    Google Scholar 

  • Quick, L. J., Meadows, M. E., Bateman, M. D., Kirsten, K. L., Mäusbacher, R., Haberzettl, T., & Chase, B. M. (2016). Vegetation and climate dynamics during the last glacial period in the fynbos-afrotemperate forest ecotone, southern Cape, South Africa. Quaternary International, 404, 136–149.

    Article  Google Scholar 

  • Rebelo, A. G., Boucher, C., Helme, N., Mucina, L., Rutherford, M. C. (2006). Fynbos biome. In: Mucina, L., & Rutherford, M. C. (eds.), The vegetation of South Africa, Lesotho and Swaziland, Pretoria: South African National Biodiversity Institute, pp. 52–219.

  • Reynard, J. P. (2021). Paradise lost: Large mammal remains as a proxy for environmental change from MIS 6 to the Holocene in Southern Africa. South African Journal of Geology 2021, 124(4), 1055–1072.

    Article  Google Scholar 

  • Rhodes, S. E., Goldberg, P., Ecker, M., Horwitz, L. K., Boaretto, E., & Chazan, M. (2022). Exploring the Later Stone Age at a micro-scale: New high-resolution excavations at Wonderwerk Cave. Quaternary International, 614, 126–145.

    Article  Google Scholar 

  • Roberts, P., Lee-Thorp, J. A., Mitchell, P. J., & Arthur, C. (2013). Stable carbon isotopic evidence for climate change across the late Pleistocene to early Holocene from Lesotho, Southern Africa. Journal of Quaternary Science, 28(4), 360–369.

    Article  Google Scholar 

  • Roberts, P., Fernandes, R., Craig, O. E., Larsen, T., Lucquin, A., Swift, J., & Zech, J. (2018). Calling all archaeologists: Guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Communications in Mass Spectrometry, 32(5), 361–372.

    Article  Google Scholar 

  • Robinson, J. R. (2017). Thinking locally: Environmental reconstruction of Middle and Later Stone Age archaeological sites in Ethiopia, Kenya, and Zambia based on ungulate stable isotopes. Journal of Human Evolution, 106, 19–37.

    Article  Google Scholar 

  • Robinson, J. R. (2022). Investigating isotopic niche space: Using rKIN for stable isotope studies in archaeology. Journal of Archaeological Method and Theory, 29(3), 831–861.

    Article  Google Scholar 

  • Robinson, J. R., & Rowan, J. (2017). Holocene paleoenvironmental change in Southeastern Africa (Makwe Rockshelter, Zambia): Implications for the spread of pastoralism. Quaternary Science Reviews, 156, 57–68.

    Article  Google Scholar 

  • Robinson, J. R., & Wadley, L. (2018). Stable isotope evidence for (mostly) stable local environments during the South African Middle Stone Age from Sibudu, KwaZulu-Natal. Journal of Archaeological Science, 100, 32–44.

    Article  Google Scholar 

  • Roffe, S. J., Fitchett, J. M., & Curtis, C. J. (2021). Investigating changes in rainfall seasonality across South Africa: 1987–2016. International Journal of Climatology, 41, E2031–E2050.

    Article  Google Scholar 

  • Scerri, E. M., Thomas, M. G., Manica, A., Gunz, P., Stock, J. T., Stringer, C., Grove, M., Groucutt, H. S., Timmermann, A., Rightmire, G. P., & d’Errico, F. (2018). Did our species evolve in subdivided populations across Africa, and why does it matter? Trends in Ecology & Evolution, 33(8), 582–594.

    Article  Google Scholar 

  • Scerri, E. M., Chikhi, L., & Thomas, M. G. (2019). Beyond multiregional and simple out-of-Africa models of human evolution. Nature Ecology & Evolution, 3(10), 1370–1372.

    Article  Google Scholar 

  • Schoville, B. J., Brown, K. S., & Wilkins, J. (2022). A lithic provisioning model as a proxy for landscape mobility in the Southern and Middle Kalahari. Journal of Archaeological Method and Theory, 29(1), 162–187.

    Article  Google Scholar 

  • Scott, L. (1989). Climatic conditions in Southern Africa since the last glacial maximum, inferred from pollen analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 70(4), 345–353.

    Article  Google Scholar 

  • Scott, L., & Nyakale, M. (2002). Pollen indications of Holocene palaeoenvironments at Florisbad spring in the central Free State, South Africa. The Holocene, 12(4), 497–503.

    Article  Google Scholar 

  • Scott, L., Holmgren, K., Talma, A. S., Woodborne, S., & Vogel, J. C. (2003). Age interpretation of the Wonderkrater spring sediments and vegetation change in the Savanna Biome, Limpopo Province, South Africa. South African Journal of Science, 99(9), 484–488.

    Google Scholar 

  • Sealy, J. (2016). Cultural change, demography, and the archaeology of the last 100 kyr in Southern Africa. In S. Jones & B. Stewart (Eds.), Africa from MIS 6–2 (pp. 65–75). Springer.

    Chapter  Google Scholar 

  • Sealy, J., Lee-Thorp, J., Loftus, E., Faith, J. T., & Marean, C. W. (2016). Late Quaternary environmental change in the southern Cape, South Africa, from stable carbon and oxygen isotopes in faunal tooth enamel from Boomplaas Cave. Journal of Quaternary Science, 31(8), 919–927.

    Article  Google Scholar 

  • Sealy, J., Naidoo, N., Hare, V. J., Brunton, S., & Faith, J. T. (2020). Climate and ecology of the palaeo-Agulhas Plain from stable carbon and oxygen isotopes in bovid tooth enamel from Nelson Bay Cave, South Africa. Quaternary Science Reviews, 235, 105974.

    Article  Google Scholar 

  • Skinner, J. D., & Chimimba, C. T. (2005). The mammals of the Southern African sub-region. Cambridge University Press.

    Book  Google Scholar 

  • Smith, J. M., Lee-Thorp, J. A., & Sealy, J. C. (2002). Stable carbon and oxygen isotopic evidence for late Pleistocene to middle Holocene climatic fluctuations in the interior of Southern Africa. Journal of Quaternary Science: Published for the Quaternary Research Association, 17(7), 683–695.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J. A., DeRuiter, D. J., Smith, J. M., Van Der Merwe, N. J., Reed, K., Grant, C. C., Ayliffe, L. K., Robinson, T. F., Heidelberger, C., & Marcus, W. (2003). Diets of Southern African Bovidae: Stable isotope evidence. Journal of Mammalogy, 84(2), 471–479.

    Article  Google Scholar 

  • Stewart, B. A., & Mitchell, P. J. (2018). Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, Southern Africa. Quaternary Science Reviews, 196, 1–20.

    Article  Google Scholar 

  • Stewart, B. A., Zhao, Y., Mitchell, P. J., Dewar, G., Gleason, J. D., & Blum, J. D. (2020). Ostrich eggshell bead strontium isotopes reveal persistent macroscale social networking across late Quaternary Southern Africa. Proceedings of the National Academy of Sciences, 117(12), 6453–6462.

    Article  Google Scholar 

  • Stowe, M. J., & Sealy, J. (2016). Terminal Pleistocene and Holocene dynamics of Southern Africa’s winter rainfall zone based on carbon and oxygen isotope analysis of bovid tooth enamel from Elands Bay Cave. Quaternary International, 404, 57–67.

    Article  Google Scholar 

  • Stratford, D., Braun, K., & Morrissey, P. (2021). Cave and rock shelter sediments of Southern Africa: A review of the chronostratigraphic and palaeoenvironmental record from Marine Isotope Stage 6 to 1. South African Journal of Geology, 124(4), 879–914.

    Article  Google Scholar 

  • Strobel, P., Bliedtner, M., Carr, A. S., Struck, J., du Plessis, N., Glaser, B., Meadows, M. E., Quick, L. J., Zech, M., Zech, R., & Haberzettl, T. (2022). Reconstructing Late Quaternary precipitation and its source on the southern Cape coast of South Africa: A multi-proxy paleoenvironmental record from Vankervelsvlei. Quaternary Science Reviews, 284, 107467.

    Article  Google Scholar 

  • Talma, A. S., & Vogel, J. C. (1992). Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Research, 37(2), 203–213.

    Article  Google Scholar 

  • Thomas, D. S., & Burrough, S. L. (2012). Interpreting geoproxies of late Quaternary climate change in African drylands: Implications for understanding environmental change and early human behaviour. Quaternary International, 253, 5–17.

    Article  Google Scholar 

  • Thomas, D. S., & Burrough, S. L. (2016). Luminescence-based dune chronologies in Southern Africa: Analysis and interpretation of dune database records across the subcontinent. Quaternary International, 410, 30–45.

    Article  Google Scholar 

  • Tyson, P. D., & Preston-Whyte, R. A. (2000). Weather and climate of Southern Africa. Oxford University Press.

    Google Scholar 

  • Val, A., & Collins, B. (2022). From veld to coast: Towards an understanding of the diverse landscapes’ uses by past foragers in Southern Africa. Journal of Paleolithic Archaeology, 5(1), 16.

    Article  Google Scholar 

  • Van Zinderen Bakker, E. M. (1967). Upper Pleistocene stratigraphy and Holocene ecology on the basis of vegetation changes in Sub-Saharan Africa. In W. W. Bishop & J. D. Clark (Eds.), Background to evolution in Africa (pp. 125–147). University of Chicago Press.

    Google Scholar 

  • Van Zinderen Bakker, E. M. (1976). Evolution of Late Quaternary palaeoclimates of Southern Africa. Palaeoecology of Africa & of the Surrounding Islands & Antarctica, 9, 160–202.

    Google Scholar 

  • Vogel, J. C. (1978). The geographical distribution of Kranz species in Southern Africa. South African Journal of Science, 75, 209–215.

    Google Scholar 

  • Vogel, J. C. (1983). Isotopic evidence for the past climates and vegetation of Southern Africa. Bothalia, 14(3/4), 391–394.

    Article  Google Scholar 

  • Vogel, J. C. (2001). Radiometric dates for the Middle Stone Age in South Africa. In P. V. Tobias (Ed.), Humanity from African naissance to coming millenia: Colloquia in human biology and palaeoanthropology (pp. 261–268). Firenze University Press.

    Google Scholar 

  • Wadley, L. (1995). Review of dated Stone Age sites recently excavated in the eastern Free State, South Africa. South African Journal of Science, 91(11–12), 574–579.

    Google Scholar 

  • Wadley, L. (1997). Rose Cottage Cave: Archaeological work 1987 to 1997. South African Journal of Science, 93(10), 439–444.

    Google Scholar 

  • Wadley, L. (2001). What is cultural modernity? A general view and a South African perspective from Rose Cottage Cave. Cambridge Archaeological Journal, 11(2), 201–221.

    Article  Google Scholar 

  • Wadley, L. (2015). Those marvellous millennia: The Middle Stone Age of Southern Africa. Azania: Archaeological Research in Africa, 50(2), 155–226.

    Article  Google Scholar 

  • Wadley, L. (1991). Rose Cottage Cave: Background and a preliminary report on the recent excavations. The South African Archaeological Bulletin, 46, 125–130.

    Article  Google Scholar 

  • Wadley, L. (1996). The Robberg Industry of Rose Cottage Cave, eastern Free State: The technology, spatial patterns and environment. The South African Archaeological Bulletin, 51, 64–74.

    Article  Google Scholar 

  • Wadley, L. (2000). The early Holocene layers of Rose Cottage Cave, eastern Free State: Technology, spatial patterns and environment. The South African Archaeological Bulletin, 55, 18–31.

    Article  Google Scholar 

  • Wang, Y. V., Larsen, T., Leduc, G., Andersen, N., Blanz, T., & Schneider, R. R. (2013). What does leaf wax δD from a mixed C3/C4 vegetation region tell us? Geochimica et Cosmochimica Acta, 111, 128–139.

    Article  Google Scholar 

  • Ward, I., Bastos, A., Carabias, D., Cawthra, H., Farr, H., Green, A., & Sturt, F. (2022). Submerged palaeolandscapes of the Southern Hemisphere (SPLOSH) – What is emerging from the Southern Hemisphere. World Archaeology, 54(1), 6–28.

    Article  Google Scholar 

  • Way, A. M., de la Peña, P., de la Peña, E., & Wadley, L. (2022). Howiesons Poort backed artifacts provide evidence for social connectivity across Southern Africa during the Final Pleistocene. Scientific Reports, 12(1), 1–12.

    Article  Google Scholar 

  • West, A. G., February, E. C., & Bowen, G. J. (2014). Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa. Journal of Geochemical Exploration, 145, 213–222.

    Article  Google Scholar 

  • White, F. (1983). The Vegetation of Africa, a Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. Paris: UNESCO.

  • Wilkins, J. (2021). Homo sapiens origins and evolution in the Kalahari Basin, Southern Africa. Evolutionary Anthropology: Issues, News, and Reviews, 30(5), 327–344.

    Article  Google Scholar 

  • Yandel, A. W., Bolus, M., Bretzke, K., Bruch, A. A., Haidle, M. N., Hertler, C., & Märker, M. (2016). Increasing behavioral flexibility? An integrative macro-scale approach to understanding the Middle Stone Age of Southern Africa. Journal of Archaeological Method and Theory, 23(2), 623–668.

    Article  Google Scholar 

  • Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., & Zahn, R. (2013). Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications, 4(1), 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

Stable isotope characterization of the Kalemba and Makwe rockshelter fauna was supported by a National Science Foundation Archaeology Doctoral Dissertation Improvement Grant (BCS – 1245803) to J.R.R. and Dietrich W. Stout. Research and export permits in Zambia were issued by the National Heritage Conservation Commission and the National Museums Board of Zambia (awarded 16 May 2013). I thank Terry Nyambe, Maambo Bwanjelela, and Chipo Simunchembu for access to the archaeological collections of the Livingstone Museum, and Taisa Kamwi and MacMillon Mudenda with the National Heritage Conservation Commission for their support in the research and export permitting process. Characterization of samples from Sibhudu was supported by a Rust Family Foundation Research Grant (RFF-2017-31). The Rust Family Foundation played no role in the study design; collection, analysis, and interpretation of the data, or writing of this manuscript. Sampling and export permissions for the Sibhudu material were granted by a permit (#1899) from the South African Heritage Resources Agency (SAHRA). I thank Lyn Wadley for her support and permission to access and sample the Sibhudu material in the Evolutionary Studies Institute at the University of the Witwatersrand. Stable isotope sample preparation and characterization were performed with the assistance of John Krigbaum and Jason Curtis in the Department of Anthropology and Department of Geosciences and the Light Stable Isotope Laboratory at the University of Florida. I thank the three anonymous reviewers who provided thoughtful and insightful comments on the initial draft of this manuscript, helping craft it into a stronger contribution. I also thank Teresa Steele for being the handling editor of this manuscript and for prompt replies and guidance throughout the submission process. Finally, I wish to thank the many researchers who have worked at the study sites and analyzed the zooarchaeological collections from these sites. Without the years of work of those researchers, multi-site compilation studies such as this one would not be possible.

Funding

New data presented here from Kalemba and Makwe rockshelters were supported by a National Science Foundation Archaeology Doctoral Dissertation Improvement Grant (BCS – 1245803) to J.R.R. and Dietrich W. Stout. New data from Sibhudu were supported by a Rust Family Foundation Research Grant (RFF-2017–31).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable. The sole author, J.R.R., completed all compilations, analyses, and writing of the manuscript.

Corresponding author

Correspondence to Joshua R. Robinson.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 217 KB)

Supplementary file2 (PDF 1458 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, J.R. A Context for Connectivity: Insights to Environmental Heterogeneity in the Late Pleistocene and Holocene of Southern Africa Through Measuring Isotope Space and Overlap. J Paleo Arch 6, 34 (2023). https://doi.org/10.1007/s41982-023-00160-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41982-023-00160-0

Keywords

Navigation