Abstract
Stone tools are the result of goal-oriented actions involving cognitive processes. Because visual attention is a requirement in accurate tool-making, visual exploration can provide information about the relationship between perception and technological evolution. The purpose of this study is to analyse visual behaviour while an expert knapper produces different stone tools, using a portable eye tracking device. To understand where gaze was directed moment by moment, different areas of interest were defined. The preliminary results show that the most observed areas were the middle region, the knapped surface, the first face of the tool being struck and the next point of percussion. There were differences in visual exploration between choppers and handaxes during knapping. The distal position, upper region, cortex and the first face of the tool being struck were more explored in choppers, while the base, knapped surface and first tool’s face knapped were more viewed for handaxes. These areas can be considered to be the most salient features needed to control knapping, hence constituting action affordances for the successful production of stone tools.
References
Ambrose, S. H. (2001). Paleolithic technology and human evolution. In Science, 291(5509), 1748–1753. https://doi.org/10.1126/science.1059487 American Association for the Advancement of Science.
Atkinson, J. (2008). The developing visual brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198525998.001.0001
Bayani, K. Y. T., Natraj, N., Khresdish, N., Pargeter, J., Stout, D., & Wheaton, L. A. (2021). Emergence of perceptuomotor relationships during paleolithic stone toolmaking learning: Intersections of observation and practice. Communications Biology, 4, 1278.
Beyene, Y., Katoh, S., Woldegabriel, G., Hart, W. K., Uto, K., Sudo, M., Kondo, M., Hyodo, M., Renne, P. R., Suwa, G., & Asfaw, B. (2013). The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1584–1591. https://doi.org/10.1073/pnas.1221285110
Borghi, A. M. (2007). Object concepts and embodiment: Why sensorimotor and cognitive process cannot be separated. Journal of Experimental Psychology: General, 135, 1–11.
Braun, D. R., Aldeias, V., Archer, W., Arrowsmith, J. R., Baraki, N., Campisano, C. J., Deino, A. L., DiMaggio, E. N., Dupont-Nivet, G., Engda, B., Feary, D. A., Garello, D. I., Kerfelew, Z., McPherron, S. P., Patterson, D. B., Reeves, J. S., Thompson, J. C., & Reed, K. E. (2019). Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proceedings of the National Academy of Sciences of the United States of America, 116(24), 11712–11717. https://doi.org/10.1073/pnas.1820177116
Bril, B., Rein, R., Nonaka, T., Wenban-Smith, F., & Dietrich, G. (2010). The role of expertise in tool use: Skill differences in functional action adaptations to task constraints. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 825–839. https://doi.org/10.1037/A0018171
Bril, B., Smaers, J., Steele, J., Rein, R., Nonaka, T., Dietrich, G., Biryukova, E., Hirata, S., & Roux, V. (2012). Functional mastery of percussive technology in nut-cracking and stone-flaking actions: experimental comparison and implications for the evolution of the human brain. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 367(1585), 59–74. https://doi.org/10.1098/rstb.2011.0147
Bruner E., Fedato A.P., Silva-Gago M., Alonso-Alcalde R., Terradillos-Bernal M., Fernández-Durantes M.A. & Martín-Guerra E. (2018a). Visuospatial integration and hand-tool interaction in cognitive archaeology. In: Hodgson T. (Ed) Processes of Visuospatial Attention and Working Memory. Current Topics in Behavioral Neurosciences, vol 41. pp. 13–36. Springer, Cham
Bruner E., Spinapolice E., Burke A., Overmann K.A. (2018b). Visuospatial integration: paleoanthropological and archaeological perspectives. In: Di Paolo L.D., Di Vincenzo F., De Petrillo F. (Eds) Evolution of Primate Social Cognition. Interdisciplinary Evolution Research, vol 5, pp. 299–326. Springer, Cham. https://doi.org/10.1007/978-3-319-93776-2_19
Carbonell, E., Sala, R., Barsky, D., & Celiberti, V. (2009). From homogeneity to multiplicity: A new approach to the study of archaic stone tools. In E. Hovers & D. R. Braun (Eds.), Interdisciplinary Approaches to the Oldowan (pp. 25–37). Springer.
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012
Chakrabarty, M. (2018). How stone tools shaped us: Post-phenomenology and material engagement theory. Philosophy & Technology. https://doi.org/10.1007/s13347-018-0310-x
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 1.
Criado-Boado, F., Alonso-Pablos, D., Blanco, M. J., Porto, Y., Rodríguez-Paz, A., Cabrejas, E., del Barrio-Álvarez, E., & Martínez, L. M. (2019). Coevolution of visual behaviour, the material world and social complexity, depicted by the eye-tracking of archaeological objects in humans. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39661-w
Cueva-Temprana, A., Lombao, D., Morales, J. I., Geribàs, N., & Mosquera, M. (2019). Gestures during knapping: A two-perspective approach to Pleistocene technologies. Lithic Technology, 0(0), 1–16. https://doi.org/10.1080/01977261.2019.1587255
de la Torre, I., Mora, R., Domínguez-Rodrigo, M., de Luque, L., & Alcalá, L. (2003). The Oldowan industry of Peninj and its bearing on the reconstruction of the technological skills of the Lower Pleistocene hominids. Journal of Human Evolution, 44, 203e224.
Doran, M., Hoffman, J. E., Scholl, B., & J. (2009). The role of eye fixations in concentration and amplification effects during multiple object tracking. Visual Cognition, 17(4), 574–597. https://doi.org/10.1080/13506280802117010
Eren, M. I., Lycett, S. J., Patten, R. J., Buchanan, B., Pargeter, J., & O’Brien, M. J. (2016). Test, model, and method validation: The role of experimental stone artifact replication in hypothesis-driven archaeology. Ethnoarchaeology, 8(2), 103–136. https://doi.org/10.1080/19442890.2016.1213972
Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: An ecological eye-tracking study. Brain and Cognition. https://doi.org/10.1016/j.bandc.2019.103582
Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. The Psychology of Looking and Seeing. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198524793.001.0001
Gao, J., Adachi, I., & Tomonaga, M. (2022). Chimpanzees (Pan troglodytes) detect strange body parts: An eye-tracking study. Animal Cognition, 25(4), 807–819. https://doi.org/10.1007/s10071-021-01593-2
Geribàs, N., Mosquera, M., & Vergès, J. M. (2010). What novice knappers have to learn to become expert stone toolmakers. Journal of Archaeological Science, 37(11), 2857–2870. https://doi.org/10.1016/J.JAS.2010.06.026
Gibson, J. J. (1979). The ecological approach to visual perception. The ecological approach to visual perception. Psychology Press. https://doi.org/10.4324/9781315740218
Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: paleontological statistics software package for education and data analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Harlacker, L. (2003) Knowledge and know-how in the Oldowan: an experimental approach. In: Apel J. & Knutsson K. (ed.) Skilled Production and Social Reproduction Aspects of Traditional Stone-Tool Technologies, Proceedings of a Symposium in Uppsala, August 20–24 (pp. 219–243). Societas Archaeologica Upsaliensis & The Department of Archaeology and Ancient History, Uppsala University.
Hodgson, T. L., Ezard, G., & Hermens, F. (2019). Eye movements in neuropsychological tasks. In: Hodgson, T. L. (Ed.), Processes of visuospatial attention and working memory. Current topics in behavioral neurosciences (Vol. 41, pp. 393–418). Springer. https://doi.org/10.1007/7854_2019_98
Ioannidou, F., Hermens, F, Hodgson, TL. (2016). The central bias in day-to-day viewing. Journal of Eye Movement Research, 9(6):5, 1–13. https://doi.org/10.16910/jemr.9.6.5
Iovita, R., & McPherron, S. P. (2011). The handaxe reloaded: A morphometric reassessment of Acheulian and Middle Paleolithic handaxes. Journal of Human Evolution, 61(1), 61–74. https://doi.org/10.1016/j.jhevol.2011.02.007
Kano, F., & Tomonaga, M. (2013). Head-mounted eye tracking of a chimpanzee under naturalistic conditions. PLoS ONE, 8(3), e59785. https://doi.org/10.1371/journal.pone.0059785
Kassuba, T., Klinge, C., Hölig, C., Röder, B., & Siebner, H. R. (2013). Vision holds a greater share in visuo-haptic object recognition than touch. NeuroImage, 65, 59–68. https://doi.org/10.1016/j.neuroimage.2012.09.054
Kowler, E. (2011). Eye movements: The past 25 years. Vision Research, 51(13), 1457–1483. https://doi.org/10.1016/j.visres.2010.12.014
Land, M. F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25(3), 296–324. https://doi.org/10.1016/j.preteyeres.2006.01.002
Land, M. F. (2009). Vision, eye movements, and natural behavior. Visual Neuroscience, 26(1), 51–62. https://doi.org/10.1017/S0952523808080899
Land, M. F., & Furneaux, S. (1997). The knowledge base of the oculomotor system. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 352(1358), 1231–1239. https://doi.org/10.1098/rstb.1997.0105
Le Meur, O., & Liu, Z. (2015). Saccadic model of eye movements for free-viewing condition. Vision Research, 116, 152–164.
Lewis, L. S., & Krupenye, C. (2022). Eye-tracking as a window into primate social cognition. American journal of primatology, 84, e23393. https://doi.org/10.1002/ajp.23393 Advance online publication.
Lombao, D., Guardiola, M., & Mosquera, M. (2017). Teaching to make stone tools: new experimental evidence supporting a technological hypothesis for the origins of language. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-14322-y
Makris, S., Hadar, A. A., & Yarrow, K. (2011). Viewing objects and planning actions: On the potentiation of grasping behaviours by visual objects. Brain and Cognition, 77(2), 257–264. https://doi.org/10.1016/j.bandc.2011.08.002
Malafouris, L. (2010). The brain–artefact interface (BAI): A challenge for archaeology and cultural neuroscience. Social Cognitive and Affective Neuroscience, 5(2–3), 264–273. https://doi.org/10.1093/scan/nsp057
Malafouris, L. (2013). How things shape the mind : A theory of material engagement. The MIT Press.
Malafouris, L. (2020). How does thinking relate to tool making? Adaptive Behaviour, 107–121. https://doi.org/10.1177/1059712320950539
Mennie, N., Hayhoe, M., & Sullivan, B. (2007). Look-ahead fixations: Anticipatory eye movements in natural tasks. Experimental Brain Research, 179(3), 427–442. https://doi.org/10.1007/s00221-006-0804-0
Meyering, L.-E., Kentridge, R., & Pettitt, P. (2021). The visual psychology of European Upper Palaeolithic figurative art: Using bubbles to understand outline depictions. World Archaeology, 52(2), 205–222. https://doi.org/10.1080/00438243.2020.1891964
Moore, M. W., & Perston, Y. (2016). Experimental insights into the cognitive significance of early stone tools. PLoS ONE, 11(7), e0158803. https://doi.org/10.1371/journal.pone.0158803
Muller, A., Clarkson, C., & Shipton, C. (2017). Measuring behavioural and cognitive complexity in lithic technology throughout human evolution. Journal of Anthropological Archaeology, 48(August), 166–180. https://doi.org/10.1016/j.jaa.2017.07.006
Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2013). Visual and linguistic cues to graspable objects. Experimental Brain Research, 229(4), 545–559. https://doi.org/10.1007/s00221-013-3616-z
Nonaka, T., Bril, B., & Rein, R. (2010). How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. Journal of Human Evolution, 59(2), 155–167. https://doi.org/10.1016/J.JHEVOL.2010.04.006
Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. In Neuroscience and Biobehavioral Reviews, 77, 03–417. https://doi.org/10.1016/j.neubiorev.2017.04.014
Pargeter, J., Khreisheh, N., & Stout, D. (2019). Understanding stone tool-making skill acquisition: Experimental methods and evolutionary implications. Journal of Human Evolution, 133, 146–166. https://doi.org/10.1016/J.JHEVOL.2019.05.010
Pargeter, J., Kreisheh, N., Shea, J. J., & Stout, D. (2020). Knowledge vs. know-how? Dissecting the foundations of stone knapping skill. Journal of Human Evolution, 145, 102807. https://doi.org/10.1016/J.JHEVOL.2020.102807
Peretto, C., Amore, F., Antoniazzi, F., Antoniazzi, A., Bahain, J.J., Cattani, L., Cavallini, E., Esposito, P., Falguères, C., Gagnepain, J., Hedley, I., Lebreton, V., Longo, L., Milliken, S., Monegatti, P., Ollé, A., Publiese, A., Renault-Miskovsky, J., Sozzi, M., Ungaro, S., Vannucci, S., Vergés, J.M., Wagner, J.J. & Yokoyama, Y. (1998). L´industrie lithique de Ca´Belvedere di Monte Poggiolo: stratigraphie, matière première, typologie, remontages et traces d´utilisation, L´Antropologie, 4.
Pettitt, P., Meyering, L.-E., & Kentridge, R. (2021). Bringing science to the study of ancient senses - archaeology and visual psychology. World Archaeology, 52(2), 183–204. https://doi.org/10.1080/00438243.2020.1909932
Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231
Putt, S. S., Wijeakumar, S., Franciscus, R. G., & Spencer, J. P. (2017). The functional brain networks that underlie Early Stone Age tool manufacture. Nature Human Behaviour, 1(6). https://doi.org/10.1038/s41562-017-0102
Roberts, K. L., & Humphreys, G. W. (2011). Action relations facilitate the identification of briefly-presented objects. Attention, Perception, and Psychophysics, 73(2), 597–612. https://doi.org/10.3758/s13414-010-0043-0
Roux, V., & David, E. (2005). Planning abilities as a dynamic perceptual-motor skill: An actualistic study of different levels of expertise involved in stone knapping. In V. Roux & B. Bril (Eds.), Stone Knapping: The Necessary Conditions for a Uniquely Hominin Behaviour (p. 91e108). The McDonald Institute for Archaeological Research.
Rüther, N. N., Tettamanti, M., Cappa, S. F., & Bellebaum, C. (2014). Observed manipulation enhances left fronto-parietal activations in the processing of unfamiliar tools. PLoS ONE, 9(6), e99401. https://doi.org/10.1371/JOURNAL.PONE.0099401
Sánchez-Yustos, P., Diez-Martín, F., Domínguez-Rodrigo, M., Duque, J., Fraile, C., Díaz, I., de Francisco, S., Baquedano, E., & Mabulla, A. (2017). The origin of the Acheulean. Techno-functional study of the FLK W lithic record (Olduvai, Tanzania). PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0179212
Schick, K. D., & Toth, N. P. (1993). Making silent stones speak: Human evolution and the dawn of technology. Simon & Schuster.
Semaw, S., Rogers, M. J., Quade, J., Renne, P. R., Butler, R. F., Dominguez-Rodrigo, M., Stout, D., Hart, W. S., Pickering, T., & Simpson, S. W. (2003). 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar. Ethiopia. Journal of Human Evolution, 45(2), 169–177. https://doi.org/10.1016/S0047-2484(03)00093-9
Shea, J. J. (2020). Cores and core-tools. In J. J. Shea (Ed.), Prehistoric stone tools of eastern Africa (pp. 137–164). Cambridge University Press. https://doi.org/10.1017/9781108334969007
Silva-Gago, M., Fedato, A., Hodgson, T., Terradillos-Bernal, M., Alonso-Alcalde, R., & Bruner, E. (2021). Visual attention reveals affordances during Lower Palaeolithic stone tool exploration. Archaeological and Anthropological Sciences, 13(9), 1–11. https://doi.org/10.1007/S12520-021-01413-1
Silva-Gago, M., Ioannidou, F., Fedato, A., Hodgson, T., & Bruner, E. (2022). Visual attention and cognitive archaeology: An eye-tracking study of Palaeolithic stone tools. Perception, 51(1), 3–24. https://doi.org/10.1177/03010066211069504
Smith, H. N., Perrone, A., Wilson, M., Raghanti, M. A., Lovejoy, C. O., Rosen, M. J., Shanbhag, S. J., DeForrest, D. S., Lyman, R. L., & Eren, M. I. (2021). Rock music: An auditory assessment of knapping. Lithic Technology, 46(4), 320–335. https://doi.org/10.1080/01977261.2021.1967581
Snyder, W. D., Reeves, J. S., & Tennie, C. (2022). Early knapping techniques do not necessitate cultural transmission. Science advances, 8(27), eabo2894. https://doi.org/10.1126/sciadv.abo2894
Stone, K. D., & Gonzalez, C. L. R. (2015). Manual preferences for visually- and haptically-guided grasping. Acta Psychologica, 160, 1–10. https://doi.org/10.1016/j.actpsy.2015.06.004
Stout, D., Passingham, R., Frith, C., Apel, J., & Chaminade, T. (2011). Technology, expertise and social cognition in human evolution. European Journal of Neuroscience, 33(7), 1328–1338. https://doi.org/10.1111/J.1460-9568.2011.07619.X
Stout, D., Hecht, E., Khreisheh, N., Bradley, B., & Chaminade, T. (2015). Cognitive demands of lower Paleolithic toolmaking. PLoS ONE, 10(4), 1–18. https://doi.org/10.1371/journal.pone.0121804
Stout, D., Chaminade, T., Apel, J., Shafti, A., & Faisal, A. A. (2021). The measurement, evolution, and neural representation of action grammars of human behavior. Scientific Reports, 11(1), 13720. https://doi.org/10.1038/s41598-021-92992-5
Tatler, B. W. (2007). The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, 7(14), 4. https://doi.org/10.1167/7.14.4
Tennie, C., Premo, L. S., Braun, D. R., & McPherron, S. P. (2017). Early stone tools and cultural transmission: Resetting the null hypothesis. Current Anthropology, 58(5), 652–672. https://doi.org/10.1086/693846
Terradillos-Bernal, M., & Rodríguez, X. P. (2012). The Lower Palaeolithic on the northern plateau of the Iberian Peninsula (Sierra de Atapuerca, Ambrona and La Maya I): a technological analysis of the cutting edge and weight of artefacts. Developing a hypothetical model. Journal of Archaeological Science, 39(5), 1467–1479. https://doi.org/10.1016/j.jas.2011.12.037
Toth, N., & Schick, K. (2018). An overview of the cognitive implications of the Oldowan Industrial Complex. Azania, 53(1), 3–39. https://doi.org/10.1080/0067270X.2018.1439558
Turvey, M. T., & Carello, C. (2011). Obtaining information by dynamic (effortful) touching. In Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1581), 3123–3132. https://doi.org/10.1098/rstb.2011.0159
Venditti, F., Agam, A., Tirillò, J., Nunziante-Cesaro, S., & Barkai, R. (2021). An integrated study discloses chopping tools use from Late Acheulean Revadim (Israel). PLoS ONE, 16(1), e0245595. https://doi.org/10.1371/journal.pone.0245595
Vingerhoets, G., Vandamme, K., & Vercammen, A. (2009). Conceptual and physical object qualities contribute differently to motor affordances. Brain and Cognition, 69(3), 481–489. https://doi.org/10.1016/J.BANDC.2008.10.003
Wagman, J. B., & Carello, C. (2003). Haptically creating affordances: The user-tool interface. Journal of Experimental Psychology: Applied, 9(3), 175–186. https://doi.org/10.1037/1076-898X.9.3.175
Williams, E. M., Gordon, A. D., & Richmond, B. G. (2014). Biomechanical strategies for accuracy and force generation during stone tool production. Journal of Human Evolution, 72, 52–63. https://doi.org/10.1016/j.jhevol.2014.03.004
Williams-Hatala, E. M., Hatala, K. G., Key, A., Dunmore, C. J., Kasper, M., Gordon, M., & Kivell, T. L. (2021). Kinetics of stone tool production among novice and expert tool makers. American Journal of Physical Anthropology, 174(4), 714–727. https://doi.org/10.1002/ajpa.24159
Wolfe, B. A., & Whitney, D. (2015). Saccadic remapping of object-selective information. Attention, Perception & Psychophysics, 77, 2260–2269. https://doi.org/10.3758/s13414-015-0944-z
Wynn, T. (2002). Archaeology and Cognitive Evolution. Behavioral and Brain Sciences, 25, 389–438.
Xiao, F., Peng, L., Fu, L., & Gao, X. (2018). Salient object detection based on eye tracking data. Signal Processing, 144, 392–397. https://doi.org/10.1016/j.sigpro.2017.10.019
Acknowledgements
We would like to thank Annapaola Fedato and Rodrigo Alonso-Alcalde for their technical support in this project and two reviewers for their helpful comments. This study is co-financed by the Junta de Castilla y León and European Social Funds (EDU/574/2018), by the Spanish Government (Project PID2021-122355NB-C33 financed by MCIN/AEI/FEDER), and by the Italian Institute of Anthropology (ISITA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Consent to Participate
Informed consent was obtained from all individual participants included in the study.
Consent for Publication
Publication consent was obtained from all individual participants included in the study.
Conflict of Interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Silva-Gago, M., Terradillos-Bernal, M., Hodgson, T. et al. The role of vision during Lower Palaeolithic tool-making. J Paleo Arch 5, 19 (2022). https://doi.org/10.1007/s41982-022-00129-5
Accepted:
Published:
DOI: https://doi.org/10.1007/s41982-022-00129-5