Skip to main content
Log in

Design and structural parameter optimization of Venturi-type microbubble reactor for wastewater treatment by CFD simulation

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Microbubble reactors play an important role in the development of gas-liquid reaction process enhancement. However, the urgent demand for high efficiency and low energy consumption in gas-liquid reaction processes, as well as the trend towards large-scale production, have put forward higher requirements for the design and optimization of microbubble reactors. In this study, a self-priming microbubble reactor was designed and its structure parameters were optimized by (computational fluid dynamics) CFD simulations. Based on the grid division method combining structured and unstructured grids, the most suitable mesh number is selected, and the simulation calculation time is saved on the premise of ensuring the accuracy. The effects of five structural parameters on the gas content and energy loss was discussed and the optimal structural parameters of the microbubble reactor were determined as follows: the diffusion section length is 75 mm, the contraction angle is 22°, the diffusion angle is 10.5°, the inlet diameter of the gas phase is 6 mm, the inlet diameter of the liquid phase flowing into the gas chamber is 3 mm, the diffusion section inlet diameter is 5 mm. Under the condition of the same inlet flow rate, the outlet gas content of the optimized gas-liquid reactor is increased by 42.9% compared with the initial structure. In the wastewater treatment experiment, the microbubble reactor reduced the chemical oxygen demand of wastewater by 61% within three hours. This study provides significant references for the design of the self-priming microbubble reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data are freely available on request from the corresponding author.

Abbreviations

a :

Diffusion section length; mm

b :

Contraction angle;°

c :

Diffusion angle; °

d :

Gas inlet diameter; mm

e :

Inlet diameter during liquid phase inflow; mm

f :

Diffusion section inlet diameter; mm

g :

Gas content.

C 2 :

Constant 1.9

C :

Constant 1.44

G k ,m :

Generation of turbulent kinetic energy; m2/s2

G b :

Turbulent kinetic energy; m2/s2

k :

Turbulent kinetic energy; m2/s2

n :

Indicates number of phases

p :

Pressure; Pa

P 15 :

Plane x = 15mm

P 28 :

Plane x = 28mm

P :

Pressure difference; Pa

t :

Flow time; s

Y M :

Contribution of the fluctuating dilation to the overall dissipation rate

α k :

Volume fraction of the kth phase

ɛ :

Turbulent dissipation rate

µ m :

Mixture viscous coefficient

μ t ,m :

Eddy viscosity; kg∙m–1·s–1

v dr,k :

Drift velocity of the kth phase; m/s

v g :

Velocity of second phase (gas phase); m/s

v l :

Velocity of primary phase (liquid phase); m/s

v lg :

Slip velocity; m/s

\({\overset{\rightharpoonup}{v}}_{{\text{m}}}\) :

Mixture velocity of two phases; m/s

ρ k :

Density of the kth phase

ρ m :

Mixture density; Kg/m3

σ k :

The turbulent prandlt number for k (σk=1)

σ ɛ :

The turbulent prandlt number for ɛ (σɛ = 1.2)

References

  1. Pasha M, Liu SE, Zhang J, Qiu M, Su YH (2022) Recent advancements on hydrodynamics and mass transfer characteristics for CO2 absorption in microreactors. Ind Eng Chem Res 61(34):12249–12268. https://doi.org/10.1021/acs.iecr.2c01982

    Article  CAS  Google Scholar 

  2. Chaudhari RV, Mills PL (2004) Multiphase catalysis and reaction engineering for emerging pharmaceutical processes. Chem Eng Sci 59(22–23):5337–5344. https://doi.org/10.1016/j.ces.2004.07.105

    Article  CAS  Google Scholar 

  3. Teli SM, Mathpati CS (2021) Experimental and numerical study of gas-liquid flow in a sectionalized external-loop airlift reactor. Chin J Chem Eng 32:39–60. https://doi.org/10.1016/j.cjche.2020.10.023

    Article  CAS  Google Scholar 

  4. Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen F-E (2020) Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synthesis and Catalysis 1(2):121–133. https://doi.org/10.1016/j.gresc.2020.08.001

    Article  Google Scholar 

  5. Jensen MB, Pedersen PL, Ottosen LDM, Fauché J, Smed MO, Fischer K (2020) <i>In silico</i> screening of venturi designs and operational conditions for gas-liquid mass transfer applications. Chem Eng J 383. https://doi.org/10.1016/j.cej.2019.123119

  6. Feng B, Yang L, Qin L, Li J (2023) Interphase mechanical energy transfer of gas-liquid flow in variable cross-section tubes. J Mar Sci Eng 11(5):926

    Article  Google Scholar 

  7. Yu J, Chen J, Li H, Zhou P, Hou D, Hong W, Yan P (2020) Transformer matched gilbert mixer with active balun for D band transmitter. Microw Opt Technol Lett 62(8):2696–2702. https://doi.org/10.1002/mop.32219

    Article  Google Scholar 

  8. Cheng D, Wang S, Kuipers JAM (2017) Modeling study of gas-liquid mass transfer enhancement by cylindrical catalyst particles. Chem Eng Sci 160:80–84

    Article  CAS  Google Scholar 

  9. Ye L, Wan T, Xie X, Hu L (2022) Study on flow characteristics and mass transfer mechanism of Kettle Taylor flow reactor. Energies 15(6):2028

  10. Gao S, Li B, Gao W, Xu J, Wang H (2023) Logistic fitting model application for evaluation of gas-liquid two-phase mixing effects. Int J Chem Reactor Eng 21(1):81–98. https://doi.org/10.1515/ijcre-2021-0286

    Article  CAS  Google Scholar 

  11. Wang M, Xia H, Zhu L, Zhang Y (2023) Regulating the gas-liquid slug flow in microchannels through high-frequency pulsatile perturbations. Ind Eng Chem Res 62(4):1997–2007. https://doi.org/10.1021/acs.iecr.2c03550

    Article  CAS  Google Scholar 

  12. Yin Y, Chen W, Wu C, Zhang X, Fu T, Zhu C, Ma Y (2022) Bubble dynamics and mass transfer enhancement in split–and–recombine (SAR) microreactor with rapid chemical reaction. Sep Purif Technol 287:120573. https://doi.org/10.1016/j.seppur.2022.120573

    Article  CAS  Google Scholar 

  13. Chen Y, Yu J, Yang Y, Huo F, Li C (2023) A continuous process for cyclic carbonate synthesis from CO2 catalyzed by the ionic liquid in a microreactor system: reaction kinetics, mass transfer, and process optimization. Chem Eng J 455:140670. https://doi.org/10.1016/j.cej.2022.140670

    Article  CAS  Google Scholar 

  14. Morais SNdOA, Lobo CEdS, Padilha CEdA, Souza DFdS, Souza JRd, Oliveira JAd, Ruiz JAC (2021) Removal of carbon dioxide from a multicomponent gas mixture by absorption using a Y-type microreactor. Ind Eng Chem Res 60(30):11590–11599. https://doi.org/10.1021/acs.iecr.1c01419

    Article  CAS  Google Scholar 

  15. Lu Y, Wang G, Liang Z, Sun J, Gu Y, Tang Z (2019) Fractal Reactor in Micro-Scale for Process Intensification. Int J Chem React Eng 17(1). https://doi.org/10.1515/ijcre-2017-0225

  16. Jiang X, Sotowa K-I, Tonomura O (2022) Controlling gas–liquid segment length in microchannels using a high-speed valve. Chem Eng Res Des 188:868–876. https://doi.org/10.1016/j.cherd.2022.10.038

    Article  CAS  Google Scholar 

  17. Pasha M, Zhang H, Shang M, Li G, Su Y (2022) CO2 absorption with diamine functionalized deep eutectic solvents in microstructured reactors. Process Saf Environ Prot 159:106–119. https://doi.org/10.1016/j.psep.2021.12.043

    Article  CAS  Google Scholar 

  18. Yu Y, Li Y, Meng H, Liu H, Li B, Li D (2023) Enhancement investigation of mass transfer and mixing performance in the static mixers with three twisted leaves. Int J Chem Reactor Eng. https://doi.org/10.1515/ijcre-2023-0021

    Article  Google Scholar 

  19. Santana HS, Silva JL, Taranto OP (2019) Optimization of micromixer with triangular baffles for chemical process in millidevices. Sens Actuators B Chem 281:191–203. https://doi.org/10.1016/j.snb.2018.10.089

    Article  CAS  Google Scholar 

  20. Gidde RR, Pawar PM, Santana HS (2023) CFD-based approach to design the heart-shaped micromixer with obstacles. Int J Chem Reactor Eng 21(2):181–192. https://doi.org/10.1515/ijcre-2022-0081

    Article  CAS  Google Scholar 

  21. Feng Y, Mu H, Liu X, Huang Z, Zhang H, Wang J, Yang Y (2020) Leveraging 3D printing for the design of high-performance venturi microbubble generators. Ind Eng Chem Res 59(17):8447–8455. https://doi.org/10.1021/acs.iecr.0c01509

    Article  CAS  Google Scholar 

  22. Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D (2011) Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci 66(14):3172–3179. https://doi.org/10.1016/j.ces.2011.02.043

    Article  CAS  Google Scholar 

  23. Maeda Y, Hosokawa S, Baba Y, Ito Y, Tomiyama A (2015) Generation mechanism of micro-bubbles in a pressurized dissolution method. Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics

  24. Lee S, Sutomo W, Liu C, Loth E (2005) Micro-fabricated electrolytic micro-bubblers. Int J Multiph Flow 31(6):706–722. https://doi.org/10.1016/j.ijmultiphaseflow.2005.02.002

    Article  CAS  Google Scholar 

  25. Makuta T, Suzuki R, Nakao T (2013) Generation of microbubbles from hollow cylindrical ultrasonic horn. Ultrasonics 53(1):196–202. https://doi.org/10.1016/j.ultras.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Sadatomi M, Kawahara A, Kano K, Ohtomo A (2005) Performance of a new micro-bubble generator with a spherical body in a flowing water tube. Exp Therm Fluid Sci 29(5):615–623

    Article  CAS  Google Scholar 

  27. Ochoa ED, García MC, Padilla ND, Remolina AM (2022) Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system. Heliyon 8(10). https://doi.org/10.1016/j.heliyon.2022.e10824

  28. Huang J, Sun L, Liu H, Mo Z, Tang J, Xie G, Du M (2020) A review on bubble generation and transportation in Venturi-type bubble generators. Exp Comput Multiph Flow 2(3):123–134

    Article  Google Scholar 

  29. Ding G, Li Z, Chen J, Cai X (2021) An investigation on the bubble transportation of a two-stage series venturi bubble generator. Chem Eng Res Des 174:345–356. https://doi.org/10.1016/j.cherd.2021.08.022

    Article  CAS  Google Scholar 

  30. Wu M, Yuan S, Song H, Li X (2022) Micro-nano bubbles production using a swirling-type venturi bubble generator. Chem Eng Process Process Intensif 170:108697. https://doi.org/10.1016/j.cep.2021.108697

    Article  CAS  Google Scholar 

  31. Lee CH, Wongwises S, Jerng D-W, Ahn HS (2021) Experimental study on breakup mechanism of microbubble in 2D channel. Case Stud Therm Eng 28:101523. https://doi.org/10.1016/j.csite.2021.101523

    Article  Google Scholar 

  32. Sakamatapan K, Mesgarpour M, Mahian O, Ahn HS, Wongwises S (2021) Experimental investigation of the microbubble generation using a venturi-type bubble generator. Case Stud Therm Eng 27:101238. https://doi.org/10.1016/j.csite.2021.101238

    Article  Google Scholar 

  33. Costa MG, Leite JM, Beckedorff L, Spengler AW, de Paiva KV, Oliveira JLG (2021) Static pressure behavior of gas–liquid flows along a Venturi. J Braz Soc Mech Sci Eng 43(11):498. https://doi.org/10.1007/s40430-021-03203-1

    Article  Google Scholar 

  34. Lee CH, Choi H, Jerng DW, Kim DE, Wongwises S, Ahn HS (2019) Experimental investigation of microbubble generation in the venturi nozzle. Int J Heat Mass Transf 136:1127–1138. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.040

    Article  Google Scholar 

  35. Pathak M, Khan MK (2013) Inter-phase slip velocity and turbulence characteristics of micro particles in an obstructed two-phase flow. Environ Fluid Mech 13(4):371–388. https://doi.org/10.1007/s10652-013-9270-y

    Article  CAS  Google Scholar 

  36. Wu X, Su P, Wu J, Zhang Y, Wang B (2022) Research on the relationship between sediment concentration and centrifugal pump performance parameters based on CFD mixture model. Energies 15(19):7228

    Article  Google Scholar 

  37. Al Mahmud S, Khan MR, Noor WI, Ismail AF, Momin MA, Bappy JH (2023) Turbulent convective heat transfer enhancement modeling of water-Al2O3 nanofluid using CFD mixture model and adaptive neural fuzzy inference system. Numer Heat Transf B Fundam 83(3):120–138. https://doi.org/10.1080/10407790.2022.2149197

    Article  CAS  Google Scholar 

  38. Du YH, Tong LL, Wang Y, Liu MZ, Yuan L, Mu XY, He SJ, Wei SX, Zhang YD, Chen ZL, Zhang ZD, Guo DS (2022) Development of a kinetics-integrated CFD model for the industrial scale-up of DHA fermentation using <i>Schizochytrium</i> sp. Aiche J 68(9). https://doi.org/10.1002/aic.17750

  39. Guan X, Xu Q, Yang N, Nigam KDP (2021) Hydrodynamics in bubble columns with helically-finned tube Internals: Experiments and CFD-PBM simulation. Chem Eng Sci 240. https://doi.org/10.1016/j.ces.2021.116674

  40. Togashi F, Löhner R, Tsuboi N (2009) Numerical simulation of H<sub>2</sub>/air detonation using unstructured mesh. Shock Waves 19(2):151–162. https://doi.org/10.1007/s00193-009-0197-7

    Article  Google Scholar 

  41. Ma DJ, Li GS, Huang ZW, Niu JL, Hou C, Liu MJ, Li JB (2012) A model of calculating the circulating pressure loss in coiled tubing ultra-short radius radial drilling. Pet Explor Dev 39(4):528–533. https://doi.org/10.1016/s1876-3804(12)60072-x

    Article  Google Scholar 

  42. Fiedler E (2009) Pressure loss calculation with particular reference to simulation results. Bauphysik 31(6):374–379. https://doi.org/10.1002/bapi.200910048

    Article  Google Scholar 

  43. Chen G, Chen L, Song L, Li J (2018) Numerical simulation of side-entry bubbling reactor. J Phys: Conf Ser 1064(1):012050. https://doi.org/10.1088/1742-6596/1064/1/012050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research has been supported by The National Key R&D Program of China (2021YFC2101900, 2022YFC2105603 and 2019YFA0905000); The National Natural Science Foundation of China (22178168, 22078150 and 22278221); Key Research and Development Plan of Jiangsu Province (BE2022791 and BE2021083); The Natural Science Foundation of Jiangsu Province, Frontier Project (BK20212003); Nanjing International Joint Research and Development Project (202002037); The Top-notch Academic Programs Project of Jiangsu Higher Education Institutions. The computational resources generously provided by the High Performance Computing Center of Nanjing Tech University are greatly appreciated.

Funding

The National Key R&D Program of China, 2021YFC2101900, 2022YFC2105603, 2019YFA0905000, The National Natural Science Foundation of China, 22178168, 22078150, 22278221, Key Research and Development Plan of Jiangsu Province, BE2022791, BE2021083, The Natural Science Foundation of Jiangsu Province, Frontier Project, BK20212003, Nanjing International Joint Research and Development Project, 202002037.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Huang, Wei He or Kai Guo.

Ethics declarations

Competing interest

The authors declare that we have no declaration of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, C., Zhao, S. et al. Design and structural parameter optimization of Venturi-type microbubble reactor for wastewater treatment by CFD simulation. J Flow Chem 14, 161–176 (2024). https://doi.org/10.1007/s41981-024-00317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-024-00317-0

Keywords

Navigation