Skip to main content

Advertisement

Log in

Lab-scale flow chemistry? Just do it yourself!

  • Review
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

In the realm of flow chemistry, Do-It-Yourself (DIY) flow setups represent a versatile and cost-effective alternative to expensive commercially available reactors. Not only they are budget friendly, but also unlock a world of possibilities for researchers to explore and create customized setups tailored to their specific needs. This minireview serves as a short compendium of DIY flow systems to assist flow researchers in the challenging task of finding a suitable setup for their experiments and facilitate the transition from batch to flow chemistry. Our goal is to demonstrate that flow chemistry can be affordable, easy-to-build, and reproducible at the same time. Therefore, herein we review and describe selected illustrative examples of easily assembled/constructed DIY flow setups, with a particular emphasis on how to select the most suitable one based on the specific chemistry of interest, ranging from simple homogeneous monophasic reactions to more complex systems for photo-, electrochemistry, and so on. In addition, we briefly comment on the significance of DIY approach on education, particularly its integration into the standard undergraduate curriculum as a key educational tool for young chemists. Ultimately, we hope this mini review will help and encourage the reader to go with the flow and get started with the fine art of flow chemistry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Noël T, Luque R (eds) (2020) Accounts on sustainable flow chemistry. Springer International Publishing, Cham

    Google Scholar 

  2. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The Hitchhiker’s guide to flow chemistry. Chem Rev 117(18):11796–11893

    CAS  PubMed  Google Scholar 

  3. Guidi M, Seeberger PH, Gilmore K (2020) How to approach flow chemistry. Chem Soc Rev 49(24):8910–8932

    CAS  PubMed  Google Scholar 

  4. Dallinger D, Kappe CO (2017) Why flow means green – evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem 7:6–12

    Google Scholar 

  5. Akwi FM, Watts P (2018) Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun 54(99):13894–13928

    CAS  Google Scholar 

  6. Noël T (2019) Flow into the chemistry curriculum. Chem World. https://www.chemistryworld.com/opinion/flow-into-the-chemistry-cur-riculum/4010382.article. Accessed 27 Sept 2019

  7. Wolf M, McQuitty S (2011) Understanding the do-it-yourself consumer: DIY motivations and outcomes. AMS Review 1(3–4):154–170

    Google Scholar 

  8. Bannock JH, Krishnadasan SH, Heeney M, de Mello JC (2014) A gentle introduction to the noble art of flow chemistry. Mater Horiz 1(4):373

    CAS  Google Scholar 

  9. Britton J, Jamison TF (2017) The assembly and use of continuous flow systems for chemical synthesis. Nat Protoc 12(11):2423–2446

    CAS  PubMed  Google Scholar 

  10. Murray PRD, Browne DL, Pastre JC et al (2013) Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of ( E/Z )-tamoxifen. Org Process Res Dev 17(9):1192–1208

    CAS  Google Scholar 

  11. Heretsch P (2023) Modern flow chemistry – prospect and advantage. Beilstein J Org Chem 19:33–35

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Glasnov T (2016) Continuous-flow chemistry in the research laboratory. Springer International Publishing, Cham

    Google Scholar 

  13. Schwolow S, Hollmann J, Schenkel B, Röder T (2012) Application-oriented analysis of mixing performance in microreactors. Org Process Res Dev 16(9):1513–1522

    CAS  Google Scholar 

  14. Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501

    CAS  Google Scholar 

  15. Battilocchio C, Ley SV. Flow chemistry. https://www.organicchemistry.org/topics/flowchemistry.shtm. Accessed 15 Oct 2023

  16. Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013) Novel process windows for enabling, accelerating, and uplifting flow chemistry. Chemsuschem 6(5):746–789

    CAS  PubMed  Google Scholar 

  17. Grillo G, Cintas P, Colia M, Calcio Gaudino E, Cravotto G (2022) Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. Front Chem Eng 4:966451

    Google Scholar 

  18. Vázquez-Amaya LY, Coppola GA, Van der Eycken EV, Sharma UK (2023) Going with the µflow: reinterpreting energy input in organic synthesis. Chimia (Aarau) 77(5):327

    PubMed  Google Scholar 

  19. Ley SV, Chen Y, Fitzpatrick DE, May OS (2020) Living with our machines: Towards a more sustainable future. Curr Opin Green Sustain Chem 25:100353

    Google Scholar 

  20. Bloemendal VRLJ, Janssen MACH, van Hest JCM, Rutjes FPJT (2020) Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. React Chem Eng 5(7):1186–1197

    CAS  Google Scholar 

  21. Baumann M, Moody TS, Smyth M, Wharry S (2020) A perspective on continuous flow chemistry in the pharmaceutical industry. Org Process Res Dev 24(10):1802–1813

    CAS  Google Scholar 

  22. Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46(5):1250–1271

    CAS  PubMed  Google Scholar 

  23. Wan L, Kong G, Liu M et al (2022) Flow chemistry in the multi-step synthesis of natural products. Green Synth Catal 3(3):243–258

    CAS  Google Scholar 

  24. Bergman RG, Danheiser RL (2016) Reproducibility in chemical research. Angew Chem Int Ed 55(41):12548–12549

    CAS  Google Scholar 

  25. Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533(7604):452–454

    CAS  PubMed  Google Scholar 

  26. Gilligan M (2019) Why don’t you go with the flow? Chem World. https://www.chemistryworld.com/opinion/lessons-from-flow-chemistry/3010870.article. Accessed 3 Sept 2019

  27. Kong DS, Thorsen TA, Babb J et al (2017) Open-source, community-driven microfluidics with Metafluidics. Nat Biotechnol 35(6):523–529

    CAS  PubMed  Google Scholar 

  28. Cole KP (2020) What elements contribute to a high-quality continuous processing submission for OPR&D ? Org Process Res Dev 24(10):1781–1784

    CAS  Google Scholar 

  29. Hone CA, Kappe CO (2021) Towards the standardization of flow chemistry protocols for organic reactions. Chem-Methods 1(11):454–467

    CAS  Google Scholar 

  30. Straathof NJW, Su Y, Hessel V, Noël T (2016) Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat Protoc 11(1):10–21

    CAS  PubMed  Google Scholar 

  31. Sagandira CR, Siyawamwaya M, Watts P (2020) 3D printing and continuous flow chemistry technology to advance pharmaceutical manufacturing in developing countries. Arab J Chem 13(11):7886–7908

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin JH, Choi S (2021) Open-source and do-it-yourself microfluidics. Sens Actuators B Chem 347:130624

    CAS  Google Scholar 

  33. Prieschl M, Cantillo D, Kappe CO (2021) A continuous flow bromodimethylsulfonium bromide generator: application to the synthesis of 2-arylaziridines from styrenes. J Flow Chem 11(2):117–125

    CAS  Google Scholar 

  34. Achternbosch M, Zibula L, Schmidt A et al (2023) Selective monosubstitution on a trichlorosilane with highly reactive organolithium compounds in a microflow reactor. J Flow Chem 13(1):9–12

    CAS  Google Scholar 

  35. Han S, Kashfipour MA, Ramezani M, Abolhasani M (2020) Accelerating gas–liquid chemical reactions in flow. Chem Commun 56(73):10593–10606

    CAS  Google Scholar 

  36. Mallia CJ, Baxendale IR (2016) The use of gases in flow synthesis. Org Process Res Dev 20(2):327–360

    CAS  Google Scholar 

  37. Hone CA, Kappe CO (2019) The use of molecular oxygen for liquid phase aerobic oxidations in continuous flow. Top Curr Chem 377(1):2

    Google Scholar 

  38. Lehmann H (2017) A scalable and safe continuous flow procedure for in-line generation of diazomethane and its precursor MNU. Green Chem 19(6):1449–1453

    CAS  Google Scholar 

  39. Gong X, Miller PW, Gee AD et al (2012) Gas-liquid segmented flow microfluidics for screening Pd-catalyzed carbonylation reactions. Chem Eur J 18(10):2768–2772

    CAS  PubMed  Google Scholar 

  40. Lange H, Carter CF, Hopkin MD et al (2011) A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing. Chem Sci 2(4):765

    CAS  Google Scholar 

  41. Gemoets HPL, Hessel V, Noël T (2014) Aerobic C-H olefination of indoles via a cross-dehydrogenative coupling in continuous flow. Org Lett 16(21):5800–5803

    CAS  PubMed  Google Scholar 

  42. Xue C, Li J, Lee JP, Zhang P, Wu J (2019) Continuous amination of aryl/heteroaryl halides using aqueous ammonia in a Teflon AF-2400 tube-in-tube micro-flow reactor. React Chem Eng 4(2):346–350

    CAS  Google Scholar 

  43. Al-Rawashdeh M, Hessel V, Löb P, Mevissen K, Schönfeld F (2008) Pseudo 3-D simulation of a falling film microreactor based on realistic channel and film profiles. Chem Eng Sci 63(21):5149–5159

    CAS  Google Scholar 

  44. Zhou C, Xie B, Chen J, Fan Y, Zhang J (2023) An efficient and safe platform based on the tube-in-tube reactor for implementing gas-liquid processes in flow. Green Chem Eng 4(3):251–263

    Google Scholar 

  45. McPake CB, Sandford G (2012) Selective continuous flow processes using fluorine gas. Org Process Res Dev 16(5):844–851

    CAS  Google Scholar 

  46. Deng Q, Shen R, Zhao Z, Yan M, Zhang L (2015) The continuous flow synthesis of 2,4,5-trifluorobenzoic acid via sequential Grignard exchange and carboxylation reactions using microreactors. Chem Eng J 262:1168–1174

    CAS  Google Scholar 

  47. Deng Q, Shen R, Ding R, Zhang L (2014) Generation of ethynyl-grignard reagent in a falling film microreactor: an expeditious flow synthesis of propargylic alcohols and analogues. Adv Synth Catal 356(14–15):2931–2936

    CAS  Google Scholar 

  48. Munirathinam R, Huskens J, Verboom W (2015) Supported catalysis in continuous-flow microreactors. Adv Synth Catal 357(6):1093–1123

    CAS  Google Scholar 

  49. Thomson CG, Lee A-L, Vilela F (2020) Heterogeneous photocatalysis in flow chemical reactors. Beilstein J Org Chem 16:1495–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng Z, Wang G, Moghtaderi B, Doroodchi E (2022) A review of microreactors based on slurry Taylor (segmented) flow. Chem Eng Sci 247:117040

    CAS  Google Scholar 

  51. Masuda K, Ichitsuka T, Koumura N, Sato K, Kobayashi S (2018) Flow fine synthesis with heterogeneous catalysts. Tetrahedron 74(15):1705–1730

    CAS  Google Scholar 

  52. Watanabe S, Nakaya N, Akai J, Kanaori K, Harada T (2018) Silica-supported catalyst for enantioselective arylation of aldehydes under batch and continuous-flow conditions. Org Lett 20(9):2737–2740

    CAS  PubMed  Google Scholar 

  53. Basavaraju KC, Sharma S, Singh AK, Im DJ, Kim D-P (2014) Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics. Chemsuschem 7(7):1864–1869

    CAS  PubMed  Google Scholar 

  54. Noël T, Luque R (eds) (2020) Accounts on sustainable flow chemistry. Topics in current chemistry collections. Springer International Publishing, Cham

  55. Yue J (2018) Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal Today 308:3–19

    CAS  Google Scholar 

  56. Lin G, Qiu H (2022) Diverse supports for immobilization of catalysts in continuous flow reactors. Chem Eur J 28(39):e202200069

    CAS  PubMed  Google Scholar 

  57. Elvira KS, i Solvas XC, Wootton RCR, de Mello AJ (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 5(11):905–915

    CAS  PubMed  Google Scholar 

  58. Jensen KF (2017) Flow chemistry-Microreaction technology comes of age. AIChE J 63(3):858–869

    CAS  Google Scholar 

  59. Yoshida J, Nagaki A, Yamada T (2008) Flash chemistry: fast chemical synthesis by using microreactors. Chem Eur J 14(25):7450–7459

    CAS  PubMed  Google Scholar 

  60. Liu Y, Jiang X (2017) Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 17(23):3960–3978

    CAS  PubMed  Google Scholar 

  61. Harding MJ, Brady S, O’Connor H et al (2020) 3D printing of PEEK reactors for flow chemistry and continuous chemical processing. React Chem Eng 5(4):728–735

    CAS  Google Scholar 

  62. Alimi OA, Akinnawo CA, Onisuru OR, Meijboom R (2020) 3-D printed microreactor for continuous flow oxidation of a flavonoid. J Flow Chem 10(3):517–531

    CAS  Google Scholar 

  63. Ahn G-N, Kim M-J, Yim S-J, Sharma BM, Kim D-P (2022) Chemical-resistant green luminescent concentrator-based photo-microreactor via one-touch assembly of 3D-printed modules. ACS Sustain Chem Eng 10(12):3951–3959

    CAS  Google Scholar 

  64. Neumaier JM, Madani A, Klein T, Ziegler T (2019) Low-budget 3D-printed equipment for continuous flow reactions. Beilstein J Org Chem 15:558–566

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee H, Roberts RC, Im DJ et al (2019) Enhanced controllability of fries rearrangements using high-resolution 3D-printed metal microreactor with circular channel. Small 15(50):1905005

    CAS  Google Scholar 

  66. Kim H, Min K-I, Inoue K et al (2016) Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science (1979) 352(6286):691–694

    CAS  Google Scholar 

  67. Ko D-H, Gyak K-W, Kim D-P (2017) Emerging microreaction systems based on 3D printing techniques and separation technologies. J Flow Chem 7(3–4):72–81

    CAS  Google Scholar 

  68. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54(23):6688–6728

    CAS  Google Scholar 

  69. Stouten SC, Noël T, Wang Q, Hessel V (2013) A view through novel process windows. Aust J Chem 66(2):121

    CAS  Google Scholar 

  70. Razzaq T, Kappe CO (2010) Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J 5(6):1274–1289

    CAS  PubMed  Google Scholar 

  71. Illg T, Löb P, Hessel V (2010) Flow chemistry using milli- and microstructured reactors—from conventional to novel process windows. Bioorg Med Chem 18(11):3707–3719

    CAS  PubMed  Google Scholar 

  72. Adeyemi A, Bergman J, Brånalt J, Sävmarker J, Larhed M (2017) Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org Process Res Dev 21(7):947–955

    CAS  Google Scholar 

  73. Teixidor F, Viñas C, Planas JG, Romero I, Núñez R (2022) Advances in the catalytic and photocatalytic behavior of carborane derived metal complexes. Adv Catal 71:1–45

    CAS  Google Scholar 

  74. Rehm TH (2020) Flow photochemistry as a tool in organic synthesis. Chem Eur J 26(71):16952–16974

    CAS  PubMed  Google Scholar 

  75. Schiel F, Peinsipp C, Kornigg S, Böse D (2021) A 3D-printed open access photoreactor designed for versatile applications in photoredox- and photoelectrochemical synthesis**. ChemPhotoChem 5(5):431–437

    CAS  Google Scholar 

  76. de Souza JM, Brocksom TJ, McQuade DT, de Oliveira KT (2018) Continuous endoperoxidation of conjugated dienes and subsequent rearrangements leading to C-H oxidized synthons. J Org Chem 83(15):7574–7585

    PubMed  Google Scholar 

  77. Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem Rev 116(17):10276–10341

    PubMed  Google Scholar 

  78. Williams JD, Otake Y, Coussanes G et al (2019) Towards a scalable synthesis of 2-oxabicyclo[2.2.0]hex-5-en-3-one using flow photochemistry. ChemPhotoChem 3(5):229–232

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin D, de los Rios JP, Surya Prakash GK (2023) Photoredox catalysis for the synthesis of N -CF 2 H compounds Using 1-((N-(difluoromethyl)-4-methylphenyl)-sulfonamido)pyridin-1-ium Trifluoromethanesulfonate. Angew Chem Int Ed 135(30):e202304294

    Google Scholar 

  80. Bottecchia C, Rubens M, Gunnoo SB et al (2017) Visible-light-mediated selective arylation of cysteine in batch and flow. Angew Chem Int Ed 56(41):12702–12707

    CAS  Google Scholar 

  81. Yang J, Kawale SA, Yang X, Kim D (2023) Continuous-flow photocatalysis for the direct C-H trifluoromethylation of heterocycles with an organic photoredox catalyst. Eur J Org Chem 26(2):e202201287

    CAS  Google Scholar 

  82. Noël T (2017) A personal perspective on the future of flow photochemistry. J Flow Chem 7(3–4):87–93

    Google Scholar 

  83. Loubière K, Oelgemöller M, Aillet T, Dechy-Cabaret O, Prat L (2016) Continuous-flow photochemistry: a need for chemical engineering. Chem Eng Process 104:120–132

    Google Scholar 

  84. Telmesani R, Park SH, Lynch-Colameta T, Beeler AB (2015) [2+2] photocycloaddition of cinnamates in flow and development of a thiourea catalyst. Angew Chem 127(39):11683–11687

    Google Scholar 

  85. Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2014) Accurate measurement of the photon flux received inside two continuous flow microphotoreactors by actinometry. Int J Chem React Eng 12(1):257–269

    Google Scholar 

  86. Laudadio G, Govaerts S, Wang Y et al (2018) Selective C(sp 3)−H aerobic oxidation enabled by decatungstate photocatalysis in flow. Angew Chem Int Ed 57(15):4078–4082

    CAS  Google Scholar 

  87. Roseau M, Dhaouadi N, Rolando C, Chausset-Boissarie L, Penhoat M (2020) Continuous photocatalyzed aerobic oxidation of benzylic organotrifluoroborates to benzaldehydes under Taylor flow conditions. J Flow Chem 10(1):347–352

    CAS  Google Scholar 

  88. Chen Q, Wang Y, Luo G (2023) Visible-light-driven direct decarboxylative carbonylation of carboxylic acids using acridine photocatalysis in oxygen-liquid flow. Chem Eng J 461:141767

    CAS  Google Scholar 

  89. Parisien-Collette S, Hernandez-Perez AC, Collins SK (2016) Photochemical synthesis of carbazoles using an [Fe(phen) 3 ](NTf 2) 2 /O 2 catalyst system: catalysis toward sustainability. Org Lett 18(19):4994–4997

    CAS  PubMed  Google Scholar 

  90. Kouridaki A, Huvaere K (2017) Singlet oxygen oxidations in homogeneous continuous flow using a gas–liquid membrane reactor. React Chem Eng 2(4):590–597

    CAS  Google Scholar 

  91. Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A (2020) Tandem photoredox catalysis: enabling carbonylative amidation of aryl and alkylhalides. Angew Chem 132(42):18805–18813

    Google Scholar 

  92. Shvydkiv O, Jähnisch K, Steinfeldt N, Yavorskyy A, Oelgemöller M (2018) Visible-light photooxygenation of α-terpinene in a falling film microreactor. Catal Today 308:102–118

    CAS  Google Scholar 

  93. Rehm TH, Gros S, Löb P, Renken A (2016) Photonic contacting of gas–liquid phases in a falling film microreactor for continuous-flow photochemical catalysis with visible light. React Chem Eng 1(6):636–648

    CAS  Google Scholar 

  94. Pieber B, Shalom M, Antonietti M, Seeberger PH, Gilmore K (2018) Continuous heterogeneous photocatalysis in serial micro-batch reactors. Angew Chem Int Ed 57(31):9976–9979

    CAS  Google Scholar 

  95. Bottecchia C, Erdmann N, Tijssen PMA et al (2016) Batch and flow synthesis of disulfides by visible-light-induced TiO 2 photocatalysis. Chemsuschem 9(14):1781–1785

    CAS  PubMed  Google Scholar 

  96. Cambié D, Dobbelaar J, Riente P et al (2019) Energy-efficient solar photochemistry with luminescent solar concentrator based photomicroreactors. Angew Chem Int Ed 58(40):14374–14378

    Google Scholar 

  97. Zhi P, Xi Z-W, Wang D-Y et al (2019) Vilsmeier-Haack reagent mediated synthetic transformations with an immobilized iridium complex photoredox catalyst. New J Chem 43(2):709–717

    CAS  Google Scholar 

  98. Chaudhuri A, Kuijpers KPL, Hendrix RBJ et al (2020) Process intensification of a photochemical oxidation reaction using a Rotor-Stator Spinning Disk Reactor: a strategy for scale up. Chem Eng J 400:125875

    CAS  Google Scholar 

  99. Gandy MN, Raston CL, Stubbs KA (2015) Photoredox catalysis under shear using thin film vortex microfluidics. Chem Commun 51(55):11041–11044

    CAS  Google Scholar 

  100. Lee DS, Amara Z, Clark CA et al (2017) Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory. Org Process Res Dev 21(7):1042–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cambié D, Noël T (2020) Solar photochemistry in flow. In: Noël T, Luque R (eds) Accounts on sustainable flow chemistry. Topics in current chemistry collections. Springer, Cham. https://doi.org/10.1007/978-3-030-36572-1_1

    Chapter  Google Scholar 

  102. Zondag SDA, Masson TM, Debije MG, Noël T (2022) The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. Photochem Photobiol Sci 21(5):705–717

    CAS  PubMed  Google Scholar 

  103. Sambiagio C, Noël T (2020) Flow photochemistry: shine some light on those tubes! Trends Chem 2(2):92–106

    CAS  Google Scholar 

  104. Cambié D, Zhao F, Hessel V, Debije MG, Noël T (2017) A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry. Angew Chem Int Ed 56(4):1050–1054

    Google Scholar 

  105. Masson TM, Zondag SDA, Debije MG, Noël T (2022) Rapid and replaceable luminescent coating for silicon-based microreactors enabling energy-efficient solar photochemistry. ACS Sustain Chem Eng 10(32):10712–10717

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Masson TM, Zondag SDA, Kuijpers KPL et al (2021) Development of an off-grid solar-powered autonomous chemical mini-plant for producing fine chemicals. Chemsuschem 14(24):5417–5423

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Noël T, Cao Y, Laudadio G (2019) The fundamentals behind the use of flow reactors in electrochemistry. Acc Chem Res 52(10):2858–2869

    PubMed  PubMed Central  Google Scholar 

  108. Maljuric S, Jud W, Kappe CO, Cantillo D (2020) Translating batch electrochemistry to single-pass continuous flow conditions: an organic chemist’s guide. J Flow Chem 10(1):181–190

    CAS  Google Scholar 

  109. Schotten C, Nicholls TP, Bourne RA et al (2020) Making electrochemistry easily accessible to the synthetic chemist. Green Chem 22(11):3358–3375

    CAS  Google Scholar 

  110. Nicholls TP, Schotten C, Willans CE (2020) Electrochemistry in continuous systems. Curr Opin Green Sustain Chem 26:100355

    Google Scholar 

  111. Pokhrel T, B K Bijaya, Giri R, Adhikari A, Ahmed N (2022) C−H bond functionalization under electrochemical flow conditions. Chem Rec 22(6):1

    Google Scholar 

  112. Horii D, Fuchigami T, Atobe M (2007) A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor. J Am Chem Soc 129(38):11692–11693

    CAS  PubMed  Google Scholar 

  113. Shida N, Nakamura Y, Atobe M (2021) Electrosynthesis in laminar flow using a flow microreactor. Chem Rec 21(9):2164–2177

    CAS  PubMed  Google Scholar 

  114. Kashiwagi T, Amemiya F, Fuchigami T, Atobe M (2013) Continuous in situ electrogeneration of o -benzoquinone in microreactor: application to high yield reaction with benzenethiols. J Flow Chem 3(1):17–22

    CAS  Google Scholar 

  115. Kashiwagi T, Amemiya F, Fuchigami T, Atobe M (2012) In situ electrogeneration of o-benzoquinone and high yield reaction with benzenethiols in a microflow system. Chem Commun 48(22):2806

    CAS  Google Scholar 

  116. Amemiya F, Horii D, Fuchigami T, Atobe M (2008) Self-supported paired electrosynthesis using a microflow reactor without intentionally added electrolyte. J Electrochem Soc 155(11):E162

    CAS  Google Scholar 

  117. Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T (2017) An easy-to-machine electrochemical flow microreactor: efficient synthesis of isoindolinone and flow functionalization. Angew Chem Int Ed 56(48):15446–15450

    CAS  Google Scholar 

  118. Takumi M, Sakaue H, Nagaki A (2022) Flash electrochemical approach to carbocations. Angew Chem Int Ed 61(10):e202116177

    CAS  Google Scholar 

  119. Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K (2019) Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363(6429):838–845

  120. Huang C, Qian X, Xu H (2019) Continuous-flow electrosynthesis of benzofused s-heterocycles by dehydrogenative C−S cross-coupling. Angew Chem Int Ed 58(20):6650–6653

    CAS  Google Scholar 

  121. Long H, Chen T-S, Song J, Zhu S, Xu H-C (2022) Electrochemical aromatic C-H hydroxylation in continuous flow. Nat Commun 13(1):3945

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Long H, Huang C, Zheng Y-T et al (2021) Electrochemical C-H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nat Commun 12(1):6629

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gütz C, Stenglein A, Waldvogel SR (2017) Highly modular flow cell for electroorganic synthesis. Org Process Res Dev 21(5):771–778

    Google Scholar 

  124. Klein M, Troglauer DL, Waldvogel SR (2023) Dehydrogenative imination of low-valent sulfur compounds─fast and scalable synthesis of sulfilimines, sulfinamidines, and sulfinimidate esters. JACS Au 3(2):575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kong W-J, Finger LH, Messinis AM et al (2019) Flow rhodaelectro-catalyzed alkyne annulations by versatile C-H activation: mechanistic support for rhodium(III/IV). J Am Chem Soc 141(43):17198–17206

    CAS  PubMed  Google Scholar 

  126. Tanbouza N, Ollevier T, Lam K (2020) Bridging lab and industry with flow electrochemistry. iScience 23(11):101720

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Laudadio G, de Smet W, Struik L, Cao Y, Noël T (2018) Design and application of a modular and scalable electrochemical flow microreactor. J Flow Chem 8(3–4):157–165

    PubMed  PubMed Central  Google Scholar 

  128. Cao Y, Soares C, Padoin N, Noël T (2021) Gas bubbles have controversial effects on Taylor flow electrochemistry. Chem Eng J 406:126811

    CAS  Google Scholar 

  129. Laudadio G, de A Bartolomeu A, Verwijlen LMHM et al (2019) Sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fluoride. J Am Chem Soc 141(30):11832–11836

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kawamata Y, Vantourout JC, Hickey DP et al (2019) Electrochemically driven, ni-catalyzed aryl amination: scope, mechanism, and applications. J Am Chem Soc 141(15):6392–6402

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Palkowitz MD, Laudadio G, Kolb S et al (2022) Overcoming limitations in decarboxylative arylation via AG–NI electrocatalysis. J Am Chem Soc 144(38):17709–17720

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang S, Junkers T, Kuhn S (2022) Continuous-flow self-supported seATRP using a sonicated microreactor. Chem Sci 13(42):12326–12331

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Love A, Lee DS, Gennari G et al (2021) A continuous-flow electrochemical taylor vortex reactor: a laboratory-scale high-throughput flow reactor with enhanced mixing for scalable electrosynthesis. Org Process Res Dev 25(7):1619–1627

    CAS  Google Scholar 

  134. Márquez-Montes RA, Collins-Martínez VH, Pérez-Reyes I et al (2020) Electrochemical engineering assessment of a novel 3D-printed filter-press electrochemical reactor for multipurpose laboratory applications. ACS Sustain Chem Eng 8(9):3896–3905

    Google Scholar 

  135. García-López I, Arenas LF, Turek T, Águeda VI, Garrido-Escudero A (2023) Mass transfer enhancement in electrochemical flow cells through 3D-printed biomimetic channels. React Chem Eng 8(7):1776–1784

    Google Scholar 

  136. Barham JP, König B (2020) Synthetic photoelectrochemistry. Angew Chem Int Ed 59(29):11732–11747

    CAS  Google Scholar 

  137. Hardwick T, Ahmed N (2021) C-H functionalization via electrophotocatalysis and photoelectrochemistry: complementary synthetic approach. ACS Sustain Chem Eng 9(12):4324–4340

    CAS  Google Scholar 

  138. Huang H, Steiniger KA, Lambert TH (2022) Electrophotocatalysis: combining light and electricity to catalyze reactions. J Am Chem Soc 144(28):12567–12583

    CAS  PubMed  Google Scholar 

  139.  Wu S, Kaur J, Karl TA, Tian X, Barham JP (2022) Synthetic molecular photoelectrochemistry: new frontiers in synthetic applications, mechanistic insights and scalability. Angew Chem Int Ed 61 (12):e202107811

  140. Qian L, Shi M (2023) Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chem Commun 59(24):3487–3506

    CAS  Google Scholar 

  141. Qiu Y, Scheremetjew A, Finger LH, Ackermann L (2020) Electrophotocatalytic undirected C−H trifluoromethylations of (Het)arenes. Chem Eur J 26(15):3241–3246

    CAS  PubMed  Google Scholar 

  142. Ioannou DI, Capaldo L, Sanramat J, Reek JNH, Noël T (2023) Accelerated electrophotocatalytic C(sp 3)−H heteroarylation enabled by an efficient continuous-flow reactor**. Angew Chem Int Ed 62(52):e202315881

    CAS  Google Scholar 

  143. Huang H, Lambert TH (2021) Electrophotocatalytic C−H heterofunctionalization of arenes. Angew Chem Int Ed 60(20):11163–11167

    CAS  Google Scholar 

  144. Huang H, Lambert TH (2021) Electrophotocatalytic acetoxyhydroxylation of aryl olefins. J Am Chem Soc 143(19):7247–7252

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Yan H, Zhu S, Xu H-C (2021) Integrating continuous-flow electrochemistry and photochemistry for the synthesis of acridinium photocatalysts via site-selective C-H alkylation. Org Process Res Dev 25(12):2608–2613

    CAS  Google Scholar 

  146. Wang Y, Li L, Fu N (2022) Electrophotochemical decarboxylative azidation of aliphatic carboxylic acids. ACS Catal 12(17):10661–10667

    CAS  Google Scholar 

  147. Xu P, Chen P, Xu H (2020) Scalable photoelectrochemical dehydrogenative cross-coupling of heteroarenes with aliphatic C−H bonds. Angew Chem Int Ed 59(34):14275–14280

    CAS  Google Scholar 

  148. Alimi OA, Potgieter K, Khumalo AA et al (2022) The synthesis of Aspirin and Acetobromo-α-D-glucose using 3D printed flow reactors: an undergraduate demonstration. J Flow Chem 12(3):265–274

    Google Scholar 

  149. Cranwell PB (2020) Recent advances towards the inclusion of flow chemistry within the undergraduate practical class curriculum. SynOpen 04(04):96–98

    CAS  Google Scholar 

  150. Penny MR, Tsui N, Hilton ST (2021) Extending practical flow chemistry into the undergraduate curriculum via the use of a portable low-cost 3D printed continuous flow system. J Flow Chem 11(1):19–29

    CAS  Google Scholar 

  151. König B, Kreitmeier P, Hilgers P, Wirth T (2013) Flow chemistry in undergraduate organic chemistry education. J Chem Educ 90(7):934–936

    Google Scholar 

  152. Kairouz V, Collins SK (2018) Continuous flow science in an undergraduate teaching laboratory: bleach-mediated oxidation in a biphasic system. J Chem Educ 95(6):1069–1072

    CAS  Google Scholar 

  153. Volpe K, Podlesny EE (2020) Modernization of a photochemical reaction for the undergraduate laboratory: continuous flow photopinacol coupling. J Chem Educ 97(2):586–591

    CAS  Google Scholar 

  154. Hoffmann H, Tausch MW (2018) Low-cost equipment for photochemical reactions. J Chem Educ 95(12):2289–2292

    CAS  Google Scholar 

  155. Santandrea J, Kairouz V, Collins SK (2018) Continuous flow science in an undergraduate teaching laboratory: photocatalytic thiol-ene reaction using visible light. J Chem Educ 95(6):1073–1077

    CAS  Google Scholar 

  156. Kuijpers KPL, Weggemans WMA, Verwijlen CJA, Noël T (2021) Flow chemistry experiments in the undergraduate teaching laboratory: synthesis of diazo dyes and disulfides. J Flow Chem 11(1):7–12

    CAS  Google Scholar 

  157. Kairouz V, Charette AB, Collins SK (2021) Implementing flow chemistry in education: the NSERC CREATE program in continuous flow science. J Flow Chem 11(1):13–17

    CAS  Google Scholar 

  158. Blanco-Ania D, Rutjes FPJT (2017) Continuous-flow chemistry in chemical education. J Flow Chem 7(3–4):157–158

    CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful to BOF-IDN/20/014G funding from KU Leuven. L.Y.V.-A. (writing) thankful to BOF-IDN/20/014G project for a PhD scholarship. G. A. C. (writing) is grateful to KU Leuven for obtaining the postdoctoral PDM scholarship. The publication has been prepared with the support of the ‘‘RUDN University Strategic Academic Leadership Program’’ (recipient E. V. V. d. E.; writing and supervision).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Amaya, L.Y., Coppola, G.A., Van der Eycken, E.V. et al. Lab-scale flow chemistry? Just do it yourself!. J Flow Chem 14, 257–279 (2024). https://doi.org/10.1007/s41981-024-00312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-024-00312-5

Keywords

Navigation