Skip to main content
Log in

Continuous synthesis of boron-doped carbon nitride supported silver nanoparticles in an ultrasound-assisted coiled flow inverter microreactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The combination of ultrasound and microreactors for the synthesis of nanomaterials is becoming increasingly popular, but effectively altering the ultrasonic field at the microscale to control the crystallization process remains a challenge. Herein, we investigated numerically and experimentally the effects of the ultrasonic field on the synthesis of boron-doped carbon nitride supported silver nanoparticles based on our homemade ultrasound-assisted coiled flow inverter microreactor (UCFIR). Specifically, the ultrasound promotes the radial mixing in the coiled flow inverter microreactor, even under low Reynolds number 10, resulting in better control over the crystallization process. The effects of key parameters, such as ultrasonic field distribution and ultrasonic power, on the particle size and size distribution of Ag/B-g-C3N4 have been demonstrated. The results show that when the ultrasound transducer is positioned on the ‘abc’ sides, the Ag/B-g-C3N4 with small and uniform Ag particles (4.12 ± 1.12 nm) can be obtained. As ultrasound power increased (0–176 W) and residence time decreased (17.5–140 s), the size of silver nanoparticles decreased, and their distribution narrowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The additional data that support the findings of this study are available from the corresponding author upon a reasonable request.

References

  1. Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J (2012) PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J 59(4):215–228. https://doi.org/10.1002/aic

    Article  Google Scholar 

  2. De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A (2020) Recent advances in continuous-flow organocatalysis for process intensification. React Chem Eng 5(6):1017–1052. https://doi.org/10.1039/d0re00076k

    Article  CAS  Google Scholar 

  3. Sebastian Cabeza V, Kuhn S, Kulkarni AA, Jensen KF (2012) Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28(17):7007–7013. https://doi.org/10.1021/la205131e

    Article  CAS  Google Scholar 

  4. Wu KJ, De VarineBohan GM, Torrente-Murciano L (2017) Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors. React. Chem. Eng. 2(2):116–128. https://doi.org/10.1039/c6re00202a

    Article  CAS  Google Scholar 

  5. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39(3):1183–1202. https://doi.org/10.1039/b821324k

    Article  CAS  PubMed  Google Scholar 

  6. Zhu H, Wu KJ, He CH (2021) Continuous Synthesis of Uniformly Dispersed Mesoporous SBA-15 Supported Silver Nanoparticles in a Coiled Flow Inverter Reactor. Front Chem 9(September):1–14. https://doi.org/10.3389/fchem.2021.747105

    Article  CAS  Google Scholar 

  7. Ranadive P, Parulkar A, Brunelli NA (2019) Jet-mixing reactor for the production of monodisperse silver nanoparticles using a reduced amount of capping agent. React Chem Eng 4:1779–1789. https://doi.org/10.1039/c9re00152b

    Article  CAS  Google Scholar 

  8. Luty-b M, Wojnicki M (2018) Green method for efficient PdNPs deposition on carbon carrier in the microreactor system. J Nanoparticle Res 20:239–254. https://doi.org/10.1007/s11051-018-4337-9

    Article  CAS  Google Scholar 

  9. Besenhard MO, Pal S, Gkogkos G, Gavriilidis A (2023) Non-fouling flow reactors for nanomaterial synthesis. React Chem Eng 8:955–977. https://doi.org/10.1039/d2re00412g

    Article  CAS  Google Scholar 

  10. Ding M, Cai X (2019) Improving MOF stability: approaches and applicaitons. Chem Sci 10:10209–10230. https://doi.org/10.1039/c9sc03916c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng Z, Nguyen HL, Hanikel N, Li KK, Zhou Z, Yaghi OM (2023) High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat Protoc 18(January):18–23. https://doi.org/10.1038/s41596-022-00756-w

    Article  CAS  Google Scholar 

  12. Ghosh A, Chowdhury B (2023) Synthesis of hollow mesoporous silica nanospheroids with O / W Emulsion and Al (III) incorporation and its catalytic. Catalysts 13(2):354–369. https://doi.org/10.3390/catal13020354

    Article  CAS  Google Scholar 

  13. Jayan H, Sun D, Pu H, Wei Q (2023) Spectrochimica acta part A: molecular and biomolecular spectroscopy mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol. Spectrochim. Acta Part A Mol. Biomol Spectrosc 284:121817–121826. https://doi.org/10.1016/j.saa.2022.121817

    Article  CAS  Google Scholar 

  14. Kuang T et al (2023) Creating poly ( lactic acid )/ carbon nanotubes / carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller. Adv Compos Hybrid Mater 6(1):1–12. https://doi.org/10.1007/s42114-022-00622-z

    Article  CAS  Google Scholar 

  15. Serp P, Castillejos E (2010) Catalysis in Carbon Nanotubes. ChemCatChem 2:41–47. https://doi.org/10.1002/cctc.200900283

    Article  CAS  Google Scholar 

  16. Alosime EM (2023) A review on surface functionalization of carbon nanotubes : methods and applications. Discov Nano 18(1):1–11. https://doi.org/10.1186/s11671-023-03789-6

    Article  CAS  Google Scholar 

  17. Shen Y et al (2020) Artificial trees for artificial photosynthesis: construction of dendrite-structured α‑Fe2O3/g‑C3N4 Z‑scheme system for efficient CO2 reduction into solar fuels. Appl Energy Mater 0–11. https://doi.org/10.1021/acsaem.0c00750.

  18. Bhosale R, Jain S, Vinod CP, Kumar S, Ogale S (2019) Direct Z‑Scheme g‑C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light. Appl Mater. Interfaces 2–11. https://doi.org/10.1021/acsami.8b22434

  19. Zhang C et al (2022) Applied surface science construction of Z-scheme heterojunction CoS / CdS @ g-C3N4 hollow sphere with spatical charge separation for enhanced photocatalytic hydrogen production. Appl Surf Sci 626:157214–157224. https://doi.org/10.1016/j.apsusc.2023.157214

    Article  CAS  Google Scholar 

  20. Liao G, Gong Y, Zhang L (2019) Environmental science semiconductor polymeric graphitic carbon nitride photocatalysts : the ‘“ holy grail ”’ for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci 12:2080–2147. https://doi.org/10.1039/c9ee00717b

    Article  CAS  Google Scholar 

  21. Li K, Cai W, Zhang Z, Xie H, Zhong Q, Qu H (2022) Boron doped C3N5 for photocatalytic nitrogen fixation to ammonia: the key role of boron in nitrogen activation and mechanism. Chem Eng J 435(P2):135017–135029. https://doi.org/10.1016/j.cej.2022.135017

    Article  CAS  Google Scholar 

  22. Zhou T et al (2022) Tailoring boron doped intramolecular donor–acceptor integrated carbon nitride skeleton with propelling photocatalytic activity and mechanism insight. Chem Eng J 445:136643–136656. https://doi.org/10.1016/j.cej.2022.136643

    Article  CAS  Google Scholar 

  23. Iqbal W, Yang B, Zhao X, Mohamed IMA, Zhang J (2020) Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance. Catal Sci Technol 549–559. https://doi.org/10.1039/c9cy02111f

  24. Li W, Guo Z, Jiang L et al (2020) Facile in situ reductive synthesis of both nitrogen deficient and protonated g-C3N4 nanosheets for the synergistic enhancement of visible-light H2 evolution. Chem Sci 2716–2728. https://doi.org/10.1039/c9sc05060d

  25. Lu L, Xu X, An K, Wang Y, Shi F (2018) Coordination polymer derived NiS@g‑C3N4 composite photocatalyst for sulfur vacancy and photothermal effect synergistic enhanced H2 production. Sustain Chem Eng 4–11. https://doi.org/10.1021/acssuschemeng.8b02153

  26. Guo J et al (2019) An efficient carbon-based ORR catalyst from low-Temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. J Mater Chem A 7(8):3544–3551. https://doi.org/10.1039/c8ta10925g

    Article  CAS  Google Scholar 

  27. DelirKheyrollahiNezhad P, Haghighi M, Jodeiri N, Rahmani F (2016) Sol–gel preparation of NiO/ZrO2(x)–MgO(100–x) nanocatalyst used in CO2/O2 oxidative dehydrogenation of ethane to ethylene: influence of Mg/Zr ratio on catalytic performance. J Sol-Gel Sci Technol 80(2):436–450. https://doi.org/10.1007/s10971-016-4120-2

    Article  CAS  Google Scholar 

  28. Arshad M et al (2019) Synthesis and characterization of SiO2 doped Fe2O3 nanoparticles: photocatalytic and antimicrobial activity evaluation. J Mol Struct 1180:244–250. https://doi.org/10.1016/j.molstruc.2018.11.104

    Article  CAS  Google Scholar 

  29. Chen MX et al (2020) Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogen-Doped Carbons with Encapsulated Metal Nanoparticles. Angew Chemie - Int Ed 59(4):1627–1633. https://doi.org/10.1002/anie.201912275

    Article  CAS  Google Scholar 

  30. Zhang L et al (2017) Facile immobilization of Ag nanoparticles on microchannel walls in microreactors for catalytic applications. Chem Eng J 309:691–699. https://doi.org/10.1016/j.cej.2016.10.038

    Article  CAS  Google Scholar 

  31. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: Is citrate a ‘magic’ reagent? J Am Chem Soc 133(46):18931–18939. https://doi.org/10.1021/ja2080345

    Article  CAS  PubMed  Google Scholar 

  32. Yang C et al (2011) Silver nanowires: From scalable synthesis to recyclable foldable electronics. Adv Mater 23(27):3052–3056. https://doi.org/10.1002/adma.201100530

    Article  CAS  PubMed  Google Scholar 

  33. Luo L, Yang M, Chen G (2020) Continuous Synthesis of Reduced Graphene Oxide-Supported Bimetallic NPs in Liquid-Liquid Segmented Flow. Ind Eng Chem Res 59(17):8456–8468. https://doi.org/10.1021/acs.iecr.0c00002

    Article  CAS  Google Scholar 

  34. Xu J et al (2023) Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series. Ultrason Sonochem 97:106451–106462. https://doi.org/10.1016/j.ultsonch.2023.106451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao S, Yao C, Liu L, Yang M, Chen G (2023) Ultrasound emulsification in microreactors: effects of channel material, surfactant nature, and ultrasound parameters. Ind Eng Chem Res 62(12):5170–5180. https://doi.org/10.1021/acs.iecr.2c04645

    Article  CAS  Google Scholar 

  36. Zhao S, Yao C, Dong Z, Chen G, Yuan Q (2020) Role of ultrasonic oscillation in chemical processes in microreactors: A mesoscale issue. Particuology 48:88–99. https://doi.org/10.1016/j.partic.2018.08.009

    Article  CAS  Google Scholar 

  37. Ichikawa et al (2019) Microwave-mediated site-selective heating of spherical-carbon- bead-supported platinum for the continuous, efficient catalytic dehydrogenative aromatization of saturated cyclic hydrocarbons. Sustain Chem Eng 7:3052–3061. https://doi.org/10.1021/acssuschemeng.8b04655

  38. Cong C, Nakayama S, Maenosono S, Harada M (2018) Microwave-assisted polyol synthesis of Pt/Pd and Pt/Rh bimetallic nanoparticles in polymer solutions prepared by batch and continuous-flow processing. Ind Eng Chem Res 57(1):179–190. https://doi.org/10.1021/acs.iecr.7b03154

    Article  CAS  Google Scholar 

  39. Manno R, Sebastian V, Mallada R (2019) 110th anniversary: nucleation of ag nanoparticles in helical micro fluidic reactor. Comparison between microwave and conventional heating. Ind Eng Chem Res 58(28):12702–12711. https://doi.org/10.1021/acs.iecr.9b01460

    Article  CAS  Google Scholar 

  40. Tsai SSH Kieda (2020) Magnetic polyelectrolyte microcapsules via water- in-water droplet microfluidics. Lab Chip 20:2851–2860. https://doi.org/10.1039/d0lc00387e

    Article  CAS  PubMed  Google Scholar 

  41. Descroix SS, Abou-hassan A (2015) Continuous chemical operations and modifications on magnetic c-Fe2O3 nanoparticles confined in nanoliter droplets for the assembly of fluorescent and magnetic SiO2@c-Fe2O3. Chem Commun 51:16904–16907. https://doi.org/10.1039/c5cc07044a

    Article  Google Scholar 

  42. Li H et al (2004) Ultrasound-assisted polyol method for the preparation of SBA-15-supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane. Langmuir 20(19):8352–8356. https://doi.org/10.1021/la049290d

    Article  CAS  PubMed  Google Scholar 

  43. Satdeve NS, Ugwekar RP, Bhanvase BA (2019) Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye. J Mol Liq 291:111313–111324. https://doi.org/10.1016/j.molliq.2019.111313

    Article  CAS  Google Scholar 

  44. Stucchi M, Cerrato G, Bianchi CL (2019) Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO2. Ultrason Sonochem 51:462–468. https://doi.org/10.1016/j.ultsonch.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  45. Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112(3):1957–2011. https://doi.org/10.1021/cr2001756

    Article  CAS  PubMed  Google Scholar 

  46. Miyasaka E, Kato Y, Hagisawa M, Hirasawa I (2006) Effect of ultrasonic irradiation on the number of acetylsalicylic acid crystals produced under the supersaturated condition and the ability of controlling the final crystal size via primary nucleation. J Cryst Growth 289(1):324–330. https://doi.org/10.1016/j.jcrysgro.2005.11.084

    Article  CAS  Google Scholar 

  47. Kurotani M, Miyasaka E, Ebihara S, Hirasawa I (2009) Effect of ultrasonic irradiation on the behavior of primary nucleation of amino acids in supersaturated solutions. J Cryst Growth 311(9):2714–2721. https://doi.org/10.1016/j.jcrysgro.2009.03.009

    Article  CAS  Google Scholar 

  48. Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX (2017) Progress of crystallization in microfluidic devices. Lab Chip 17(13):2167–2185. https://doi.org/10.1039/c6lc01225f

    Article  CAS  PubMed  Google Scholar 

  49. Fernandez Rivas D, Kuhn S (2016) Synergy of Microfluidics and Ultrasound: Process Intensification Challenges and Opportunities. Top. Curr. Chem 374(5):1–30. https://doi.org/10.1007/s41061-016-0070-y

    Article  CAS  Google Scholar 

  50. Mao Y et al (2020) Enhancement of lysozyme crystallization under ultrasound field. Ultrason Sonochem 63:104975–104982. https://doi.org/10.1016/j.ultsonch.2020.104975

    Article  CAS  PubMed  Google Scholar 

  51. Hussain MN, Jordens J, John JJ, Braeken L, Van Gerven T (2019) Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: anti-solvent crystallization. Ultrason Sonochem 59:104743–104753. https://doi.org/10.1016/j.ultsonch.2019.104743

    Article  CAS  PubMed  Google Scholar 

  52. Dalvi SV, Yadav MD (2015) Effect of ultrasound and stabilizers on nucleation kinetics of curcumin during liquid antisolvent precipitation. Ultrason Sonochem 24:114–122. https://doi.org/10.1016/j.ultsonch.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  53. Beck C, Dalvi SV, Dave RN (2010) Controlled liquid antisolvent precipitation using a rapid mixing device. Chem Eng Sci 65(21):5669–5675. https://doi.org/10.1016/j.ces.2010.04.001

    Article  CAS  Google Scholar 

  54. Dighe AV et al (2022) Autocatalysis and Oriented Attachment Direct the Synthesis of a Metal-Organic Framework. JACS Au 2(2):453–462. https://doi.org/10.1021/jacsau.1c00494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP (2016) Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework UiO-66 via Modulated Synthesis. Chem Mater 28(11):3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602

    Article  CAS  Google Scholar 

  56. Butova VV, Zdravkova VR, Burachevskaia OA, Tereshchenko AA, Shestakova PS, Hadjiivanov KI (2023) In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. Nanomaterials 13(10):1–16. https://doi.org/10.3390/nano13101675

    Article  CAS  Google Scholar 

  57. Udepurkar AP, Clasen C, Kuhn S (2023) Emulsification mechanism in an ultrasonic microreactor: Influence of surface roughness and ultrasound frequency. Ultrason Sonochem 94:106323–106336. https://doi.org/10.1016/j.ultsonch.2023.106323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pohl B, Jamshidi R, Brenner G, Peuker UA (2012) Experimental study of continuous ultrasonic reactors for mixing and precipitation of nanoparticles. Chem Eng Sci 69(1):365–372. https://doi.org/10.1016/j.ces.2011.10.058

    Article  CAS  Google Scholar 

  59. Preeyanghaa M, Vinesh V, Sabarikirishwaran P, Rajkamal A, Ashokkumar M, Neppolian B (2022) Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon N Y 192:405–417. https://doi.org/10.1016/j.carbon.2022.03.011

    Article  CAS  Google Scholar 

  60. HaziMastan T, Lenka M, Sarkar D (2017) Nucleation kinetics from metastable zone widths for sonocrystallization of L-phenylalanine. Ultrason Sonochem 36:497–506. https://doi.org/10.1016/j.ultsonch.2016.12.017

    Article  CAS  Google Scholar 

  61. Zhong X, Huang C, Chen L, Yang Q, Huang Y (2022) Effect of ultrasound on the kinetics of anti-solvent crystallization of sucrose. Ultrason Sonochem 82:105886–105896. https://doi.org/10.1016/j.ultsonch.2021.105886

    Article  CAS  PubMed  Google Scholar 

  62. Dong Z, Udepurkar A, Kuhn S (2020) Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. Ultrason Sonochem 60(1):104800–104809. https://doi.org/10.1016/j.ultsonch.2019.104800

    Article  CAS  PubMed  Google Scholar 

  63. Zhu H, Wu KJ, He CH (2021) (2022) Ultrasound-assisted synthesis of visible-light-driven Ag/g-C3N4 catalysts in a continuous flow reactor. Chem Eng J 429:132412–132423. https://doi.org/10.1016/j.cej.2021.132412

    Article  CAS  Google Scholar 

  64. Bampouli A et al (2023) Understanding the ultrasound field of high viscosity mixtures: experimental and numerical investigation of a lab scale batch reactor. Ultrason Sonochem 97:106444–106458. https://doi.org/10.1016/j.ultsonch.2023.106444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang C, Okafor AN, Malik H, Nigam KDP, Nandakumar K (2022) Improved mass transfer performance of membrane units in a toroidal helical pipe—Reduction of concentration polarization by secondary flows. Chem Eng Process - Process Intensif 180:108759. https://doi.org/10.1016/j.cep.2021.108759

    Article  CAS  Google Scholar 

  66. Toma M, Fukutomi S, Asakura Y, Koda S (2011) A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500kHz for organic solvents. Ultrason Sonochem 18(1):197–208. https://doi.org/10.1016/j.ultsonch.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  67. Wang X, Liu Z, Wang B, Cai Y, Song Q (2023) An overview on state-of-art of micromixer designs, characteristics and applications. Anal Chim Acta 1279:341685–341705. https://doi.org/10.1016/j.aca.2023.341685

    Article  CAS  PubMed  Google Scholar 

  68. Saikia D, Huang YY, Wu CE, Kao HM (2016) Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Adv 6(42):35167–35176. https://doi.org/10.1039/c6ra01592a

    Article  CAS  Google Scholar 

  69. Verma P, Kuwahara Y, Mori K, Yamashita H (2015) Synthesis and characterization of a Pd/Ag bimetallic nanocatalyst on SBA-15 mesoporous silica as a plasmonic catalyst. J Mater Chem A 3(37):18889–18897. https://doi.org/10.1039/c5ta04818d

    Article  CAS  Google Scholar 

  70. Delacour C, Lutz C, Kuhn S (2019) Pulsed ultrasound for temperature control and clogging prevention in micro-reactors. Ultrason Sonochem 55(March):67–74. https://doi.org/10.1016/j.ultsonch.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  71. Nalesso S, Bussemaker MJ, Sear RP, Hodnett M, Lee J (2019) A review on possible mechanisms of sonocrystallisation in solution. Ultrason Sonochem 57(February):125–138. https://doi.org/10.1016/j.ultsonch.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  72. Sander JRG, Zeiger BW, Suslick KS (2014) Sonocrystallization and sonofragmentation. Ultrason Sonochem 21(6):1908–1915. https://doi.org/10.1016/j.ultsonch.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  73. Liu Z, Yang M, Dong Z, Yao C, Chen G (2023) Cavitation behavior and mixing performance of antisolvent precipitation process in an ultrasonic micromixer. AIChE J 69:18080–18095. https://doi.org/10.1002/aic.18080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant no. U22A20408), Zhejiang Provincial Key R&D Program (Grant no. 2022C01179) and Institute of Zhejiang University-Quzhou S&T Planed Projects (IZQ2021KJ2022 IZQ2022KJ1014) for this work.

Funding

National Natural Science Foundation of China,U22A20408, Zhejiang Provincial Key R&D Program, 2022C01179. Institute of Zhejiang University-Quzhou S&T Planed Projects (IZQ2021KJ2022 IZQ2022KJ1014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2155 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Yt., Wu, KJ. & He, CH. Continuous synthesis of boron-doped carbon nitride supported silver nanoparticles in an ultrasound-assisted coiled flow inverter microreactor. J Flow Chem 14, 177–196 (2024). https://doi.org/10.1007/s41981-023-00300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-023-00300-1

Keywords

Navigation