Skip to main content
Log in

Droplet generation at T-junctions in parallelized microchannels

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Microchemical technology is an advanced chemical production technology and the large-scale production for industrial applications is realized by parallelization of microchannels. In this paper, the emulsification process and numbering-up of droplets in asymmetric parallelized microchannels with T-junction are investigated, and the effects of fluid properties and operating conditions on droplet size are analyzed. The droplet generation process is divided into waiting stage, filling stage, necking stage, and pinch-off stage, according to the variation of the characteristic length scale during droplet generation. The flow patterns of droplet swarm in cavities and their influence on fluid distribution are analyzed. The droplet size prediction equation and fluid distribution model in asymmetric parallelized microchannel are constructed. The phenomenon of droplet asynchronous generation due to the coupling of parallelized microchannels during the numbering-up process is analyzed. The effect of asynchronous generation on droplet monodispersity is investigated and the mothod for the prevention of this effect is proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Taotao Fu, upon reasonable request.

References

  1. Núñez-Flores A, Sandoval A, Mancilla E, Hidalgo-Millán A, Ascanio G (2020) Enhancement of photocatalytic degradation of ibuprofen contained in water using a static mixer. Chem Eng Res Des 156:54–63. https://doi.org/10.1016/j.cherd.2020.01.018

    Article  CAS  Google Scholar 

  2. SivertVist J (2004) Two-phase flow distribution in compact heat exchanger manifolds. Exp Thermal Fluid Sci 28(2–3):209–215. https://doi.org/10.1016/S0894-1777(03)00041-4

    Article  CAS  Google Scholar 

  3. Sontti SG, Atta A (2017) CFD Analysis of Taylor Bubble in a Co-Flow Microchannel with Newtonian and Non-Newtonian Liquid. Ind Eng Chem Res 56(25):7401–7412. https://doi.org/10.1021/acs.iecr.7b01244

    Article  CAS  Google Scholar 

  4. Drenckhan W, Langevin D (2010) Monodisperse foams in one to three dimensions. Curr Opin Colloid Interface Sci 15(5):341–358. https://doi.org/10.1016/j.cocis.2010.06.002

    Article  CAS  Google Scholar 

  5. Hoang DA, Haringa C, Portela LM, Kreutzer MT, Kleijn CR, van Steijn V (2014) Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors. Chem Eng J 236:545–554. https://doi.org/10.1016/j.cej.2013.08.066

    Article  CAS  Google Scholar 

  6. Centner CS, Murphy EM, Priddy MC, Moore JT, Janis BR, Menze MA, Defilippis AP, Kopechek JA (2020) Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system. Biomicrofluidics 14(2):024114. https://doi.org/10.1063/1.5144617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR (2019) Rapidly separable microneedle patch for the sustained release of a contraceptive. Nature Biomedical Engineering 3(3):220–229. https://doi.org/10.1038/s41551-018-0337-4

    Article  CAS  PubMed  Google Scholar 

  8. Yao C, Dong Z, Zhao Y, Chen G (2014) An online method to measure mass transfer of slug flow in a microchannel. Chem Eng Sci 112:15–24. https://doi.org/10.1016/j.ces.2014.03.016

    Article  CAS  Google Scholar 

  9. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411. https://doi.org/10.1146/annurev.fluid.36.050802.122124

    Article  Google Scholar 

  10. Shui L, Eijkel J, Vandenberg A (2007) Multiphase flow in micro- and nanochannels. Sens Actuators, B Chem 121(1):263–276. https://doi.org/10.1016/j.snb.2006.09.040

    Article  CAS  Google Scholar 

  11. Garstecki P, Gitlin I, Diluzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651. https://doi.org/10.1063/1.1796526

    Article  CAS  Google Scholar 

  12. Husny J, Cooper-White JJ (2006) The effect of elasticity on drop creation in T-shaped microchannels. J Nonnewton Fluid Mech 137(1–3):121–136. https://doi.org/10.1016/j.jnnfm.2006.03.007

    Article  CAS  Google Scholar 

  13. Xu JH, Li SW, Wang YJ, Luo GS (2006) Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device. Appl Phys Lett 88(13):133506. https://doi.org/10.1063/1.2189570

    Article  CAS  Google Scholar 

  14. Rebrov EV, Ismagilov IZ, Ekatpure RP, De Croon MHJM, Schouten JC (2007) Header design for flow equalization in microstructured reactors. AIChE J 53(1):28–38. https://doi.org/10.1002/aic.11043

    Article  CAS  Google Scholar 

  15. Duanmu Y, Riche CT, Gupta M, Malmstadt N, Huang Q (2018) Scale-up modeling for manufacturing nanoparticles using microfluidic T-junction. Iise Transactions 50(10):892–899. https://doi.org/10.1080/24725854.2018.1443529

    Article  Google Scholar 

  16. Kuijpers KPL, van Dijk MAH, Rumeur QG, Hessel V, Su YH, Noel T (2017) A sensitivity analysis of a numbered-up photomicroreactor system. React Chem Eng 2(2):109–115. https://doi.org/10.1039/c7re00024c

    Article  CAS  Google Scholar 

  17. Rongwei G, Taotao F, Chunying Z, Youguang M (2021) Research Progress on Gas-liquid Two-phase Flow and Numbering-up Strategy in Microchannel. Chem Ind Eng 38(6):74–86. https://doi.org/10.13353/j.issn.1004.9533.20210358

    Article  Google Scholar 

  18. Qu WL, Mudawar I (2003) Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. Int J Heat Mass Transf 46(15):2737–2753. https://doi.org/10.1016/s0017-9310(03)00044-9

    Article  Google Scholar 

  19. Wang H, Jiang SK, Zhu CY, Ma YG, Fu TT (2021) Bubble formation in T-junctions within parallelized microchannels: Effect of viscoelasticity. Chem Eng J 426:16. https://doi.org/10.1016/j.cej.2021.131783

    Article  CAS  Google Scholar 

  20. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437. https://doi.org/10.1039/b510841a

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto M, Shevkoplyas SS, ZasońSka B, Szymborski T, Garstecki P, Whitesides GM (2008) Formation of Bubbles and Droplets in Parallel. Coupled Flow-Focusing Geometries Small 4(10):1795–1805. https://doi.org/10.1002/smll.200800591

    Article  CAS  PubMed  Google Scholar 

  22. Barbier V, Willaime H, Tabeling P, Jousse F (2006) Producing droplets in parallel microfluidic systems. Physical Review E 74(4). https://doi.org/10.1103/physreve.74.046306

  23. Um E, Kim M, Kim H, Kang JH, Stone HA, Jeong J (2020) Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-18930-7

  24. Zhao F, Cambié D, Janse J, Wieland EW, Kuijpers KPL, Hessel V, Debije MG, Noël T (2018) Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up. ACS Sust Chem Eng 6(1):422–429. https://doi.org/10.1021/acssuschemeng.7b02687

    Article  CAS  Google Scholar 

  25. He C, Jiang B, Zhan W, Li S, Wang X, Zhu C, Ma Y, Fu T (2023) Mesoscale effect on droplet formation in a step-emulsification microdevice with parallel microchannels. Chemical Engineering Journal 454. https://doi.org/10.1016/j.cej.2022.140275

  26. Bai L, Fu Y, Zhao S, Cheng Y (2016) Droplet formation in a microfluidic T-junction involving highly viscous fluid systems. Chem Eng Sci 145:141–148. https://doi.org/10.1016/j.ces.2016.02.013

    Article  CAS  Google Scholar 

  27. Gupta A, Kumar R (2010) Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect. Phys Fluids 22(12). https://doi.org/10.1063/1.3523483

  28. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys Rev Lett 86(18):4163–4166. https://doi.org/10.1103/PhysRevLett.86.4163

    Article  CAS  PubMed  Google Scholar 

  29. De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161. https://doi.org/10.1017/S002211200700910X

    Article  Google Scholar 

  30. Steegmans MLJ, Schroen C, Boom RM (2009) Generalised insights in droplet formation at T-junctions through statistical analysis. Chem Eng Sci 64(13):3042–3050. https://doi.org/10.1016/j.ces.2009.03.010

    Article  CAS  Google Scholar 

  31. Vuong SM, Anna SL (2012) Tuning bubbly structures in microchannels. Biomicrofluidics 6(2):22004–2200418. https://doi.org/10.1063/1.3693605

    Article  PubMed  Google Scholar 

  32. Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11):1479. https://doi.org/10.1039/b706549c

    Article  CAS  PubMed  Google Scholar 

  33. Abdollahi A, Norris SE, Sharma RN (2020) Pressure Drop and Film Thickness of Liquid-Liquid Taylor Flow in Square Microchannels. Int J Heat Mass Transf 156. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119802

  34. Jovanovic J, Zhou WY, Rebrov EV, Nijhuis TA, Hessel V, Schouten JC (2011) Liquid-liquid slug flow: Hydrodynamics and pressure drop. Chem Eng Sci 66(1):42–54. https://doi.org/10.1016/j.ces.2010.09.040

    Article  CAS  Google Scholar 

  35. Conchouso D, Castro D, Khan SA, Foulds IG (2014) Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 14(16):3011. https://doi.org/10.1039/c4lc00379a

    Article  CAS  PubMed  Google Scholar 

  36. Stoffel M, Wahl S, Lorenceau E, Höhler R, Mercier B, Angelescu DE (2012) Bubble Production Mechanism in a Microfluidic Foam Generator. Phys Rev Lett 108(19). https://doi.org/10.1103/physrevlett.108.198302

Download references

Acknowledgements

The financial supports for this project from the National Natural Science Foundation of China (No. 21878212) and the exploratory project of the State Key Laboratory of Chemical Engineering (No. SKL-ChE-22T07) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Zhongdong Wang], [Taotao Fu];

Methodology: [Zhongdong Wang], [Taotao Fu];

Formal analysis and investigation: [Zhongdong Wang], [Xingyu Xiang], [Sajawal Raza], [Asad Ullah], [Chunying Zhu], [Tianyang Feng], [Youguang Ma], [Taotao Fu];

Writing—original draft preparation: [Zhongdong Wang];

Writing—review and editing: [Zhongdong Wang], [Xingyu Xiang], [Sajawal Raza], [Asad Ullah], [Chunying Zhu], [Tianyang Feng], [Youguang Ma], [Taotao Fu];

Funding acquisition: [Taotao Fu];

Resources: [Taotao Fu];

Supervision: [Taotao Fu].

Corresponding authors

Correspondence to Tianyang Feng or Taotao Fu.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xiang, X., Raza, S. et al. Droplet generation at T-junctions in parallelized microchannels. J Flow Chem 14, 313–327 (2024). https://doi.org/10.1007/s41981-023-00281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-023-00281-1

Keywords

Navigation