Skip to main content

Synthesis of new heterocyclic resveratrol analogues in milli- and microreactors: intensification of the Wittig reaction

Abstract

Resveratrol is a natural bioactive non-flavonoid polyphenol that protects from cardiovascular disease, neurodegenerative diseases and various cancers. Unfortunately, the amounts of resveratrol in plants are low and therefore, chemical synthesis is still the main way to obtain this valuable structure. In this work, Wittig reaction was chosen as the synthetic route for the study on technology influence in batch vs. micro- or milliflow reactors during the production of new resveratrol-like compounds. A series of reactions was carried out by batch synthesis, and intensified in a milli- and a microreactor, changing the reaction conditions to increase the efficiency and productivity of the process. Results were compared based on conversion, yield, productivity and trans/cis ratio. Similar yields and conversions were obtained in all reaction systems, but in much shorter time in the milli- and microscale compared to the batch reactor. On the other hand, higher productivities were obtained in the millireactor and microreactor, making them better systems for the proposed reactions of new heterocyclic resveratrol analogues synthesis.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Belwal T, Nabavi SM, Nabavi SF, Dehpour AR, Shirooie S (2020) Naturally occurring chemicals against Alzheimer’s Disease. Academic, London. https://doi.org/10.1016/C2018-0-03965-1

  2. Anekonda TS (2006) Brain Res Rev 52(2):316–326. https://doi.org/10.1016/j.brainresrev.2006.04.004

    CAS  Article  PubMed  Google Scholar 

  3. Anekonda TS, Wadsworth TL, Sabin R, Frahler K, Harris C, Petriko B, Ralle M, Woltjer R, Quinn JF (2011) J Alzheimers Dis 23:21–35. https://doi.org/10.3233/JAD-2010-101287

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Li J, Qiu Z, Zhao GR (2022) Synth Syst Biotechnol 7:718–729. https://doi.org/10.1016/j.synbio.2022.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopez-Hernandez J, Paseiro-Losada P, Sanches-Silva AT, Lage-Yusty MA (2007) Eur Food Res Technol 225:789–796. https://doi.org/10.1007/s00217-006-0483-x

    CAS  Article  Google Scholar 

  6. Montsko G, Nikfardjam MSP, Szabo Z, Boddi K, Lorand T, Ohmacht R, Mark L (2008) J Photochem Photobiol A 196:44–50. https://doi.org/10.1039/c2pp25239b

    CAS  Article  Google Scholar 

  7. Silva CG, Monteiro J, Marques RRN, Silva AMT, Martínez C, Canle M, Faria JL (2013) Photochem Photobiol Sci 12:638. https://doi.org/10.1039/c2pp25239b

    CAS  Article  PubMed  Google Scholar 

  8. Cottart CH, Nivet-Antoine C, Laguillier-Morizot C, Beaudeux JL (2010) Mol Nutr Food Res 54:7–16. https://doi.org/10.1002/mnfr.200900437

    CAS  Article  PubMed  Google Scholar 

  9. Klaus WL, Shiming L (2018) BioFactors 44:83–90. https://doi.org/10.1002/biof.1396

    CAS  Article  Google Scholar 

  10. Roupe KA, Remsberg CM, Yáñez JA, Davies NM (2006) Curr Clin Pharmacol 1:81–101. https://doi.org/10.2174/157488406775268246

    CAS  Article  PubMed  Google Scholar 

  11. Lin HS, Yue BD, Ho PC (2009) Biomed Chromatogr 23:1308–1315. https://doi.org/10.1002/bmc.1254

    CAS  Article  PubMed  Google Scholar 

  12. McCormack D, McFadden D (2013) Oxid Med Cell Longev 2013:575482. https://doi.org/10.1155/2013/575482

  13. Bertelli AAE, Giovanni L, Stradi R, Bertelli A, Tillement JP (1996) Int J Tissue React 18:67–71. https://doi.org/10.4172/2155-9880.1000216

    CAS  Article  PubMed  Google Scholar 

  14. Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A (2002) J Agric Food Chem 50:3337–3340. https://doi.org/10.1021/jf0112973

    CAS  Article  PubMed  Google Scholar 

  15. Ratola N, Faria JL, Alves A (2004) Food Technol Biotechnol 42:125–130

    CAS  Google Scholar 

  16. Šinkovec E, Krajnc M (2011) Org Process Res Dev 15:817–823. https://doi.org/10.1021/op200061j

    CAS  Article  Google Scholar 

  17. Okamoto H, Takahashi H, Takane T, Nishiyama Y, Kakiuchi K, Gohda S, Yamaji M (2017) Synthesis 49:2949–2957. https://doi.org/10.1055/s-0036-1588775

    CAS  Article  Google Scholar 

  18. Gerardy R, Emmanuel N, Toupy T, Kassin V-E, Tshibalzona NN, Schmitz M, Monbaliu J-CM (2018) Eur J Org Chem 2018:2301–2351. https://doi.org/10.1002/ejoc.201800149

  19. Baumann M, Moody TS, Smyth M, Wharry S (2020) Org Process Res Dev 24:1802–1813. https://doi.org/10.1021/acs.oprd.9b00524

  20. Bloemendal VRLJ, Janssen MACH, van Hest JCM, Rutjes FPJT (2020) React Chem Eng 5:1186–1197. https://doi.org/10.1039/D0RE00087F

  21. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) Chem Rev 117:11796–11893. https://doi.org/10.1021/asc.chemrev.7b00183

    CAS  Article  PubMed  Google Scholar 

  22. Wegner J, Ceylan S, Kirschning A (2011) Chem Commun 47:4583–4592. https://doi.org/10.1039/C0CC05060A

    CAS  Article  Google Scholar 

  23. Geyer K, Codee JDC, Seeberger PH (2006) Chem Eur J 12:8434. https://doi.org/10.1002/chem.200600596

    CAS  Article  PubMed  Google Scholar 

  24. Mlakić M, Šalić A, Bačić M, Zelić B, Šagud I, Horváth O, Škorić I (2021) Catalysts 11:395. https://doi.org/10.3390/catal11030395

    CAS  Article  Google Scholar 

  25. Horspool WM, Song PS (1995) CRC Handbook of Organic Photochemistry and Photobiology, Boca Raton

  26. Griesbeck A, Oelgemӧller M, Ghetti F (2012) CRC Handbook of Organic Photochemistry and Photobiology, Boca Raton

  27. Gingerich SB, Jennings PW (1983) J Org Chem 48:2606. https://doi.org/10.1021/jo00163a039

    CAS  Article  Google Scholar 

  28. Gülçin I (2010) Innov Food Sci Emerg Technol 11:210–218. https://doi.org/10.1016/j.ifset.2009.07.002

    CAS  Article  Google Scholar 

  29. Fauconneau B, Waffo-Teguo P, Huguet F, Barrier L, Decendit A, Merillon JM (1997) Life Sci 61:2103–2110. https://doi.org/10.1016/s0024-3205(97)00883-7

    CAS  Article  PubMed  Google Scholar 

  30. Orallo F (2006) Curr Med Chem 13:87–98

    CAS  Article  Google Scholar 

  31. Francioso A, Mastromarino P, Masci A, d’Erme M, Mosca L (2014) Med Chem 10:237–245. https://doi.org/10.2174/15734064113096660053

    CAS  Article  PubMed  Google Scholar 

  32. Kulkarni SS, Canto C (2015) Biochim Biophys Acta 1852:1114–1123. https://doi.org/10.1016/j.bbadis.2014.10.005

    CAS  Article  PubMed  Google Scholar 

  33. Brand-Williams W, Cuvelier ME, Berset C (1995) LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the University of Zagreb short term scientific support for 2021 under the title Synthesis and photochemistry of various new heterostilbene derivatives. We acknowledge the NMR Centre at Ruđer Bošković Institute and the competent help by Željko Marinić for recording all the NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita Šalić or Irena Škorić.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent not applicable.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. All Author declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 442 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mlakić, M., Rajič, L., Ljubić, A. et al. Synthesis of new heterocyclic resveratrol analogues in milli- and microreactors: intensification of the Wittig reaction. J Flow Chem (2022). https://doi.org/10.1007/s41981-022-00239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41981-022-00239-9

Keywords

  • Continuous flow
  • Resveratrol analogues
  • Milli- and microreactor
  • Process intensification