Skip to main content
Log in

Dominance of heat transfer limitations in conventional sol-gel synthesis of LTA revealed by microcrystallization

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The non-classical nucleation and growth mechanism for hydrothermal zeolite synthesis is a complex convolution of thermodynamic phase transformations, kinetic chemical condensations, three-phase mass transfer and spatial-temporal thermal gradients. The process is typically studied in batch autoclaves heated with laboratory ovens before being scaled in high temperature batch crystallizers. The experimental and theoretical work presented here proposes that transport limitations dominate batch process syntheses. Thus, kinetically-controlled, scalable crystallization must be achieved for accurate elucidation of the underlying crystallization mechanism. A segmented microdroplet crystallizer is used to remove internal and external heat transfer gradients during the synthesis of LTA zeolite crystals. The heat transfer regimes are carefully mapped, and specific criteria are established for overcoming thermal limitations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Prasomsri T, Jiao W, Weng SZ, Garcia Martinez J (2015) Mesostructured zeolites: bridging the gap between zeolites and MCM-41. Chem Commun 51(43):8900–8911. https://doi.org/10.1039/C4CC10391B

    Article  CAS  Google Scholar 

  2. Database of Zeolite Structures (2021) International Zeolite Association. http://www.iza-structure.org/databases/

  3. Moreno A, Mendoza ME (2015) 31 - crystallization in gels. In: Rudolph P (ed) Handbook of crystal growthSecond edn. Elsevier, Boston, pp 1277–1315. https://doi.org/10.1016/B978-0-444-63303-3.00031-6

  4. Nikolakis V, Kokkoli E, Tirrell M, Tsapatsis M, Vlachos DG (2000) Zeolite growth by addition of subcolloidal particles: modeling and experimental validation. Chem Mater 12(3):845–853. https://doi.org/10.1021/cm990653i

    Article  CAS  Google Scholar 

  5. Kumar M, Li R, Rimer JD (2016) Assembly and evolution of amorphous precursors in zeolite L crystallization. Chem Mater 28(6):1714–1727. https://doi.org/10.1021/acs.chemmater.5b04569

    Article  CAS  Google Scholar 

  6. Alfaro S, Rodríguez C, Valenzuela MA, Bosch P (2007) Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template. Mater Lett 61(23):4655–4658. https://doi.org/10.1016/j.matlet.2007.03.009

    Article  CAS  Google Scholar 

  7. Li R, Chawla A, Linares N, Sutjianto JG, Chapman KW, Martínez JG, Rimer JD (2018) Diverse physical states of amorphous precursors in zeolite synthesis. Ind Eng Chem Res 57(25):8460–8471. https://doi.org/10.1021/acs.iecr.8b01695

    Article  CAS  Google Scholar 

  8. Chernov AA, Givargizov EJ, Bagdasarov KS, Kuznetsov VA, Demianets LN, Lobachev AN (2012) Modern crystallography III: crystal growth. Springer, Berlin Heidelberg

    Google Scholar 

  9. Rossi D, Jamshidi R, Saffari N, Kuhn S, Gavriilidis A, Mazzei L (2015) Continuous-flow sonocrystallization in droplet-based microfluidics. Cryst Growth Des 15(11):5519–5529. https://doi.org/10.1021/acs.cgd.5b01153

    Article  CAS  Google Scholar 

  10. Yazdanpanah N, Nagy ZK (2020) The handbook of continuous crystallization. Royal Society of Chemistry

    Book  Google Scholar 

  11. Liu Z, Wakihara T, Nishioka D, Oshima K, Takewaki T, Okubo T (2014) One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method. Chem Commun 50(19):2526–2528. https://doi.org/10.1039/C3CC49548E

    Article  CAS  Google Scholar 

  12. Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Design and scaling up of microchemical systems: a review. Annual Review of Chemical and Biomolecular Engineering 8(1):285–305. https://doi.org/10.1146/annurev-chembioeng-060816-101443

    Article  PubMed  Google Scholar 

  13. Liu Z, Okabe K, Anand C, Yonezawa Y, Zhu J, Yamada H, Endo A, Yanaba Y, Yoshikawa T, Ohara K, Okubo T, Wakihara T (2016) Continuous flow synthesis of ZSM-5 zeolite on the order of seconds. Proc Natl Acad Sci 113(50):14267–14271. https://doi.org/10.1073/pnas.1615872113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Degnan T, Chitnis G, Schipper PH (2000) History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous Mesoporous Mater 35:245–252

    Article  Google Scholar 

  15. Flanigen EM (1991) Chapter 2 zeolites and molecular sieves an historical perspective. In: van Bekkum H, Flanigen EM, Jansen JC (eds) Studies in surface science and catalysis, vol 58. Elsevier, pp 13–34. https://doi.org/10.1016/S0167-2991(08)63599-5

    Chapter  Google Scholar 

  16. Zhang X, Liu D, Xu D, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M (2012) Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336(6089):1684–1687. https://doi.org/10.1126/science.1221111

    Article  CAS  PubMed  Google Scholar 

  17. Díaz I, Kokkoli E, Terasaki O, Tsapatsis M (2004) Surface structure of zeolite (MFI) crystals. Chem Mater 16(25):5226–5232. https://doi.org/10.1021/cm0488534

    Article  CAS  Google Scholar 

  18. Boudreau LC, Kuck JA, Tsapatsis M (1999) Deposition of oriented zeolite a films: in situ and secondary growth. J Membr Sci 152(1):41–59. https://doi.org/10.1016/S0376-7388(98)00166-5

    Article  CAS  Google Scholar 

  19. Davis TM, Drews TO, Ramanan H, He C, Dong J, Schnablegger H, Katsoulakis MA, Kokkoli E, McCormick AV, Penn RL, Tsapatsis M (2006) Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 5:400. https://doi.org/10.1038/nmat1636

    Article  CAS  PubMed  Google Scholar 

  20. Davis ME (1991) Zeolites and molecular-sieves - not JUST ordinary catalysts. Ind Eng Chem Res 30(8):1675–1683. https://doi.org/10.1021/ie00056a001

    Article  CAS  Google Scholar 

  21. Lobo RF, Zones SI, Davis ME (1995) Structure-direction in zeolite synthesis. In: Herron N, Corbin DR (eds) Inclusion chemistry with zeolites: nanoscale materials by design. Springer Netherlands, Dordrecht, pp 47–78. https://doi.org/10.1007/978-94-011-0119-6_2

    Chapter  Google Scholar 

  22. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821. https://doi.org/10.1038/nature00785

    Article  CAS  PubMed  Google Scholar 

  23. Feng G, Cheng P, Yan W, Boronat M, Li X, Su J-H, Wang J, Li Y, Corma A, Xu R, Yu J (2016) Accelerated crystallization of zeolites via hydroxyl free radicals. Science 351(6278):1188–1191. https://doi.org/10.1126/science.aaf1559

    Article  CAS  PubMed  Google Scholar 

  24. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2420. https://doi.org/10.1021/cr960406n

    Article  CAS  PubMed  Google Scholar 

  25. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216(1–2):298–312. https://doi.org/10.1016/S0021-9517(02)00132-X

    Article  CAS  Google Scholar 

  26. Moliner M, Román-Leshkov Y, Corma A (2019) Machine learning applied to zeolite synthesis: the missing link for realizing high-throughput discovery. Acc Chem Res 52(10):2971–2980. https://doi.org/10.1021/acs.accounts.9b00399

    Article  CAS  PubMed  Google Scholar 

  27. Rimer JD, Fedeyko JM, Vlachos DG, Lobo RF (2006) Silica self-assembly and synthesis of microporous and mesoporous silicates. Chem Eur J 12(11):2926–2934. https://doi.org/10.1002/chem.200500684

    Article  CAS  PubMed  Google Scholar 

  28. Thompson RW (1998) Recent advances in the understanding of zeolite synthesis. Synthesis, vol 1. Molecular Sieves. Springer, Berlin Heidelberg, pp 1–33. https://doi.org/10.1007/3-540-69615-6_1

    Chapter  Google Scholar 

  29. Thompson RW, Dyer A (1985) Mathematical analyses of zeolite crystallization. Zeolites 5(4):202–210. https://doi.org/10.1016/0144-2449(85)90086-7

    Article  CAS  Google Scholar 

  30. Kumar M, Luo H, Román-Leshkov Y, Rimer JD (2015) SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J Am Chem Soc 137(40):13007–13017. https://doi.org/10.1021/jacs.5b07477

    Article  CAS  PubMed  Google Scholar 

  31. Rimer JD (2018) Rational design of zeolite catalysts. Nature Catalysis 1(7):488–489. https://doi.org/10.1038/s41929-018-0114-5

    Article  CAS  Google Scholar 

  32. Kumar S, Wang Z, Penn RL, Tsapatsis M (2008) A structural resolution Cryo-TEM study of the early stages of MFI growth. J Am Chem Soc 130(51):17284–17286. https://doi.org/10.1021/ja8063167

    Article  CAS  PubMed  Google Scholar 

  33. Ju J, Zeng C, Zhang L, Xu N (2006) Continuous synthesis of zeolite NaA in a microchannel reactor. Chem Eng J 116(2):115–121. https://doi.org/10.1016/j.cej.2005.11.006

    Article  CAS  Google Scholar 

  34. Coker EN, Dixon AG, Thompson RW, Sacco A (1995) Zeolite synthesis in unstirred batch reactors II. Effect of non-uniform pre-mixing on the crystallization of zeolites A and X. Microporous Mater 3(6):637–646. https://doi.org/10.1016/0927-6513(94)00070-C

    Article  CAS  Google Scholar 

  35. Chen C-T, Iyoki K, Yamada H, Sukenaga S, Ando M, Shibata H, Ohara K, Wakihara T, Okubo T (2019) Zeolite crystallization triggered by intermediate stirring. J Phys Chem C 123(33):20304–20313. https://doi.org/10.1021/acs.jpcc.9b04778

    Article  CAS  Google Scholar 

  36. Askari S, Miar Alipour S, Halladj R, Davood Abadi Farahani MH (2013) Effects of ultrasound on the synthesis of zeolites: a review. J Porous Mater 20(1):285–302. https://doi.org/10.1007/s10934-012-9598-6

    Article  CAS  Google Scholar 

  37. Porcher F, Dusausoy Y, Souhassou M, Lecomte C (2000) Epitaxial growth of zeolite X on zeolite a and twinning in zeolite a: structural and topological analysis. Mineral Mag 64(1):1–8. https://doi.org/10.1180/002646100549012

    Article  CAS  Google Scholar 

  38. Kumar M, Choudhary MK, Rimer JD (2018) Transient modes of zeolite surface growth from 3D gel-like islands to 2D single layers. Nat Commun 9(1):2129. https://doi.org/10.1038/s41467-018-04296-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qin W, Jain R, Robles Hernández FC, Rimer JD (2019) Organic-free Interzeolite transformation in the absence of common building units. Chem Eur J 25(23):5893–5898. https://doi.org/10.1002/chem.201901067

    Article  CAS  PubMed  Google Scholar 

  40. Bagi S, Wright AM, Oppenheim J, Dincă M, Román-Leshkov Y (2021) Accelerated synthesis of a Ni2Cl2(BTDD) metal–organic framework in a continuous flow reactor for atmospheric water capture. ACS Sustain Chem Eng 9(11):3996–4003. https://doi.org/10.1021/acssuschemeng.0c07055

    Article  CAS  Google Scholar 

  41. Khater A, Mohammadi M, Mohamad A, Nezhad AS (2019) Dynamics of temperature-actuated droplets within microfluidics. Sci Rep 9(1):3832. https://doi.org/10.1038/s41598-019-40069-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu L, Pan Y, Wang C, Zhang L (2013) A two-phase segmented microfluidic technique for one-step continuous versatile preparation of zeolites. Chem Eng J 219:78–85. https://doi.org/10.1016/j.cej.2013.01.009

    Article  CAS  Google Scholar 

  43. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045. https://doi.org/10.1039/C001191F

    Article  CAS  PubMed  Google Scholar 

  44. Gualtieri A, Norby P, Artioli G, Hanson J (1997) Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites. Phys Chem Miner 24(3):191–199. https://doi.org/10.1007/s002690050032

    Article  CAS  Google Scholar 

  45. Thompson RW (1992) Analysis of zeolite crystallizations using Avrami transformation methods. Zeolites 12(6):680–684. https://doi.org/10.1016/0144-2449(92)90115-6

    Article  CAS  Google Scholar 

  46. Den Ouden CJJ, Thompson RW (1992) Analysis of zeolite crystallization using the "crystallization curve". Ind Eng Chem Res 31(1):369–373. https://doi.org/10.1021/ie00001a050

    Article  Google Scholar 

  47. Mullin JW (2001) Crystallization. Elsevier Science

    Google Scholar 

  48. Karthika S, Radhakrishnan TK, Kalaichelvi P (2016) A review of classical and nonclassical nucleation theories. Cryst Growth Des 16(11):6663–6681. https://doi.org/10.1021/acs.cgd.6b00794

    Article  CAS  Google Scholar 

  49. Gaillac R, Chibani S, Coudert F-X (2020) Speeding up discovery of Auxetic zeolite frameworks by machine learning. Chem Mater 32(6):2653–2663. https://doi.org/10.1021/acs.chemmater.0c00434

    Article  CAS  Google Scholar 

  50. Cubillas P, Anderson MW (2010) Synthesis mechanism: crystal growth and nucleation. Zeolites and catalysis. Wiley-VCH Verlag GmbH & Co, KGaA, pp 1–55. https://doi.org/10.1002/9783527630295.ch1

    Chapter  Google Scholar 

  51. Coronas J (2010) Present and future synthesis challenges for zeolites. Chem Eng J 156(2):236–242. https://doi.org/10.1016/j.cej.2009.11.006

    Article  CAS  Google Scholar 

  52. Grand J, Awala H, Mintova S (2016) Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm 18(5):650–664. https://doi.org/10.1039/C5CE02286J

    Article  CAS  Google Scholar 

  53. Brar T, France P, Smirniotis PG (2001) Control of crystal size and distribution of zeolite a. Ind Eng Chem Res 40(4):1133–1139. https://doi.org/10.1021/ie000748q

    Article  CAS  Google Scholar 

  54. Gora L, Thompson RW (1997) Controlled addition of aged mother liquor to zeolite NaA synthesis solutions. Zeolites 18(2):132–141. https://doi.org/10.1016/S0144-2449(96)00163-7

    Article  CAS  Google Scholar 

  55. Bronić J, Subotić B (1995) Role of homogeneous nucleation in the formation of primary zeolite particles. Microporous Mater 4(2):239–242. https://doi.org/10.1016/0927-6513(94)00087-C

    Article  Google Scholar 

  56. Warzywoda J, Edelman RD, Thompson RW (1991) Crystallization of high-silica ZSM-5 in the presence of seeds. Zeolites 11(4):318–324. https://doi.org/10.1016/0144-2449(91)80294-A

    Article  CAS  Google Scholar 

  57. Davis TM, Drews TO, Ramanan H, He C, Dong J, Schnablegger H, Katsoulakis MA, Kokkoli E, McCormick AV, Penn RL, Tsapatsis M (2006) Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 5 (5):400-408. http://www.nature.com/nmat/journal/v5/n5/suppinfo/nmat1636_S1.html

  58. Fan W, Snyder MA, Kumar S, Lee P-S, Yoo WC, McCormick AV, Lee Penn R, Stein A, Tsapatsis M (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7 (12):984-991. http://www.nature.com/nmat/journal/v7/n12/suppinfo/nmat2302_S1.html

  59. Gharibeh M, Tompsett G, Lu F, Auerbach SM, Yngvesson KS, Conner WC (2009) Temperature distributions within zeolite precursor solutions in the presence of microwaves. J Phys Chem B 113(37):12506–12520. https://doi.org/10.1021/jp900394u

    Article  CAS  PubMed  Google Scholar 

  60. Burkett SL, Davis ME (1995) Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5. Chem Mater 7(5):920–928. https://doi.org/10.1021/cm00053a017

    Article  CAS  Google Scholar 

  61. Lupulescu AI, Rimer JD (2014) In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344(6185):729–732. https://doi.org/10.1126/science.1250984

    Article  CAS  PubMed  Google Scholar 

  62. Lee P-S, Zhang X, Stoeger JA, Malek A, Fan W, Kumar S, Yoo WC, Al Hashimi S, Penn RL, Stein A, Tsapatsis M (2010) Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted Silicalite-1. J Am Chem Soc 133(3):493–502. https://doi.org/10.1021/ja107942n

    Article  CAS  PubMed  Google Scholar 

  63. Arafat A, Jansen JC, Ebaid AR, van Bekkum H (1993) Microwave preparation of zeolite Y and ZSM-5. Zeolites 13(3):162–165. https://doi.org/10.1016/S0144-2449(05)80272-6

    Article  CAS  Google Scholar 

  64. Bonaccorsi L, Proverbio E (2008) Influence of process parameters in microwave continuous synthesis of zeolite LTA. Microporous Mesoporous Mater 112(1–3):481–493. https://doi.org/10.1016/j.micromeso.2007.10.028

    Article  CAS  Google Scholar 

  65. Liu Z, Zhu J, Wakihara T, Okubo T (2019) Ultrafast synthesis of zeolites: breakthrough, progress and perspective. Inorganic Chemistry Frontiers 6(1):14–31. https://doi.org/10.1039/C8QI00939B

    Article  CAS  Google Scholar 

  66. Yang S, Navrotsky A, Phillips BL (2001) An in situ calorimetric study of the synthesis of FAU zeolite. Microporous Mesoporous Mater 46(2):137–151. https://doi.org/10.1016/S1387-1811(01)00268-2

    Article  CAS  Google Scholar 

  67. Chen C-T, Iyoki K, Yonezawa Y, Okubo T, Wakihara T (2020) Understanding the nucleation and crystal growth of zeolites: a case study on the crystallization of ZSM-5 from a hydrogel system under Ultrasonication. J Phys Chem C 124(21):11516–11524. https://doi.org/10.1021/acs.jpcc.0c02578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the American Chemical Society Petroleum Research Fund for financial support, ACS PRF 58609-DNI5.

Funding

The authors acknowledge the American Chemical Society Petroleum Research Fund for financial support, ACS PRF 58609-DNI5.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Andrew R. Teixeira.

Ethics declarations

Conflicts of interest/competing interests

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Five reactor designs that create distinct heat transfer regimes have been used to reveal heat transfer limitations during zeolite crystallization

• Segmented microdroplet microbatch crystallizers used to remove heat transfer limitations

• Nondimensional analysis performed to establish criteria and a regime map for isothermal, kinetically-limited environment

Supplementary Information

ESM 1

(PDF 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crislip, J.C., Vicens, J., Pham, T. et al. Dominance of heat transfer limitations in conventional sol-gel synthesis of LTA revealed by microcrystallization. J Flow Chem 12, 397–408 (2022). https://doi.org/10.1007/s41981-022-00217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-022-00217-1

Keywords

Navigation